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SUMMARY
Immune profiling of COVID-19 patients has identified numerous alterations in both innate and adaptive immu-
nity. However, whether those changes are specific to SARS-CoV-2 or driven by a general inflammatory
response shared across severely ill pneumonia patients remains unknown. Here, we compared the immune
profile of severe COVID-19 with non-SARS-CoV-2 pneumonia ICU patients using longitudinal, high-dimen-
sional single-cell spectral cytometry and algorithm-guided analysis. COVID-19 and non-SARS-CoV-2 pneu-
monia both showed increased emergency myelopoiesis and displayed features of adaptive immune paraly-
sis. However, pathological immune signatures suggestive of T cell exhaustion were exclusive to COVID-19.
The integration of single-cell profiling with a predicted binding capacity of SARS-CoV-2 peptides to the pa-
tients’ HLA profile further linked the COVID-19 immunopathology to impaired virus recognition. Toward clin-
ical translation, circulating CD56+T cell frequency was identified as a predictive biomarker for patient
outcome. Our comparative immune map serves to delineate treatment strategies to interfere with the immu-
nopathologic cascade exclusive to severe COVID-19.
INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic has

affected more than 150 million people worldwide and resulted

in more than 3 million deaths as of April 2021 (World Health Or-

ganization, 2020a). The causative agent is severe acute respira-

tory syndrome (RS) coronavirus 2 (SARS-CoV-2) (Lu et al., 2020).

The majority of people infected with SARS-CoV-2 are either

asymptomatic or develop mild and self-limiting symptoms of fe-

ver, cough, and shortness of breath. However, approximately
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8% of COVID-19 patients go on to experience the severe com-

plications of pneumonia, respiratory failure, and acute respira-

tory distress syndrome (ARDS), frequently requiring admission

to the intensive care unit (ICU) and mechanical ventilation (Iype

and Gulati, 2020; O’Driscoll et al., 2021). Despite some clinical

similarities to other severe respiratory infections causing multi-

organ failure, COVID-19 presents unique clinical challenges

that we do not yet know how to overcome: at present, the in-

ICU mortality rate remains at approximately 50% (Armstrong

et al., 2020). Thus there is an urgent need to understand how
ublished by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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mild and severe SARS-CoV-2 infection differ from each other

and how they are distinct from other causes of severe RS.

Although the factors underpinning severe COVID-19 are not

yet completely understood, evidence suggests that extreme res-

piratory distress in these patients is mediated primarily by immu-

nopathology (Hadjadj et al., 2020; Merad andMartin, 2020). Mul-

tiple studies have shown differences in the proportions of

immune cell populations in the peripheral blood of COVID-19 pa-

tients compared with healthy individuals, in particular a marked

lymphopenia that is accompanied by changes to the lymphocyte

activation and exhaustion phenotypes, some of which are partly

associated with severity of the disease (Cao, 2020; Mathew

et al., 2020; Su et al., 2020; Zheng et al., 2020). Alongside these

cellular characteristics, a cytokine storm, defined by a massive

increase in circulating levels of inflammatory cytokines including

IL-6, GM-CSF, and TNF, drives disease progression and the

development of lung immunopathology (Bastard et al., 2020; Bo-

naventura et al., 2020; Hadjadj et al., 2020; Lucas et al., 2020;

Poland et al., 2020; Del Valle et al., 2020; Zhang et al., 2020).

However, because of the lack of large, well-controlled studies

on the immune responses of hospitalized patients with non-

COVID-19 critical pneumonias, the extent to which these im-

mune changes are COVID-19 specific or common to other life-

threatening pathogen-induced pneumonias remains unclear.

Identifying those immune phenotypes and processes underlying

severe COVID-19 would represent an important step forward in

the rational development of new and more effective ways of

treating this uniquely challenging disease.

Here, we compared immune profiles in longitudinally

collected blood samples from mild and severe COVID-19 pa-

tients, alongside a cohort of critically ill patients suffering

from pneumonia triggered by non-SARS-CoV-2 pathogens

and healthy controls (HCs). This enabled us to identify immune

signatures specific to SARS-CoV-2 and those shared with other

pathogen-associated severe RSs. Whereas emergency myelo-

poiesis and adaptive immune paralysis are common features of

RSs, signs of T cell exhaustion and reduced cytotoxicity were

exclusive to COVID-19. Last, the identification of circulating

CD56+T cell frequencies as a predictive biomarker for patient

outcome could immediately serve for early patient stratification

and decision making.

RESULTS

Study participants, sampling protocols, and
experimental approach
We recruited three cohorts of participants: 57COVID-19 patients

(150 samples) from three independent centers across Germany

(Tuebingen) and France (Toulouse and Nantes). COVID-19 pa-

tients were categorized into six severity grades on the basis of

the World Health Organization’s (WHO) ordinal scale (World

Health Organization, 2020b), which subdivides mild (severity

grades 1–3, COVID-19m) and severe (severity grades 4–6,

COVID-19s) disease. The second cohort included 25 patients

admitted to the ICU with non-SARS-CoV-2 pneumonia (hospi-

tal-acquired pneumonia [HAP]), and the third cohort consisted

of 21 HCs (Figure 1A). For the HAP cohort, all episodes of pneu-

monia were classified as severe and required invasive mechan-

ical ventilation. Comprehensive demographic data were
collected and are provided in Figure S1A and Tables S1A

and S1B.

COVID-19 patients gave blood samples between days 0 and

96 after their hospital admission (Table S1C; except one patient

assigned to severity grade 1), while HAP patients gave a single

blood sample at 1–4 days post-diagnosis of pneumonia, and

HCs also donated once. In the case of COVID-19 patients, the

time from infection to hospital admission is on average

6.4 days (Lauer et al., 2020; Li et al., 2020). In total, we collected

196 blood samples across all cohorts. Blood samples were pro-

cessed for full blood counts and standard biochemistry at the

clinical centers, with peripheral blood mononuclear cells

(PBMCs) isolated and cryopreserved for later analysis (Figures

1A and S1A).

The samples were subjected to high-parametric single-cell

spectral flow cytometry (Figures 1A and S1A; Table S1A). We

used three overlapping antibody panels targeting a range of

cell surface molecules, including the SARS-CoV-2 receptor

angiotensin-converting enzyme 2 (ACE2) (Table S2A), and cyto-

kines (after short-term stimulation; Tables S2B and S2C). This

immune profiling approach enabled us to assess (1) the overall

lymphocyte and myeloid composition of PBMCs, (2) the relative

abundance of T cell subsets and their effector or memory status,

(3) levels of B cell differentiation, (4) levels of natural killer (NK) cell

differentiation, (5) the relative abundance of monocyte and den-

dritic cell (DC) subsets, (6) signs of lymphocyte activation and

exhaustion, (7) cytokine production by lymphocytes , and (8)

cytokine production by myeloid cells. All samples were quality

screened (for details, see STAR Methods), leading to the inclu-

sion of 167 PBMC samples across all cohorts. We used compu-

tational data integration based on 50 markers from spectral flow

cytometry together with 25 clinical measures (e.g., age, sex,

body mass index [BMI]) and human leukocyte antigen (HLA)

typing to ultimately define the severe COVID-19-specific im-

mune landscape (Table S1A).

Immunomonitoring reveals differing immune
landscapes in COVID-19m, COVID-19s, and HAP
patients
To generate an overview of the circulating immune compartment

in COVID-19m and COVID-19s patients, we analyzed spectral

flow cytometry data using FlowSOM-based clustering (Van Gas-

sen et al., 2015) combined with uniform manifold approximation

and projection (UMAP) dimensionality reduction (McInnes, et al.,

2018) (Figures 1B, S1B, and S1C). Comparison of PBMCs from

HCs and COVID-19 patients revealed numerous frequency alter-

ations of canonical immune subsets among CD45+ cells, except

CD4+ lymphocytes, NK cells, and monocytes, which were com-

parable across all time points (TPs) (Figure S1D). Compared with

COVID-19m, severe disease was characterized by significantly

lower frequencies of CD8+ T cells coupled with higher fre-

quencies of B cells (Figure S1D).

We next combined all cytometry parameters of the surface

panel (Table S2A) to deeply phenotype T cell, B cell, NK cell,

DC, and monocyte subsets from each cohort, assessing their

differentiation and activation state as well as their exhaustion

profile. Following data integration and HAP inclusion, a prin-

cipal-component analysis (PCA) of the resulting immune land-

scapes showed a clear segregation of cells from HCs compared
Immunity 54, 1578–1593, July 13, 2021 1579



Figure 1. Immunomonitoring reveals

differing immune landscapes in COVID-

19m, COVID-19s, and HAP patients

(A) Schematic of experimental approach.

(B) UMAP with FlowSOM overlay showing total

CD45pos cells of combined samples. One thou-

sand cells were subsetted from every sample from

each cohort.

(C) PCA of the total immune compartment on the

basis of marker expression in the surface panel.

(D) Comparison of immune features derived from

each leukocyte subpopulation between experi-

mental groups. A dot plot displaying the ES

calculated in HAP versus COVID-19s (x axis;

threshold 0.4) compared with the ES calculated in

COVID-19m versus COVID-19s (y axis; threshold

0.3). Each dot represents one immunological

feature; colors represent the leukocyte compart-

ment they refer to.

(E) Proportion of each immune compartment

(normalized to input) in the identified sets of im-

mune features highlighted in (D).

See also Figure S1.
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with both COVID-19 and HAP groups, while COVID-19s patients

shared signatures both with COVID-19m and HAP patients (Fig-

ures 1C and S1E). Stratification of the COVID-19 cohort data by

sex or age did not reveal marked differences in immune pheno-

types (Figures S1F and S1G).

To uncover the immunological dysregulation of COVID-19s

that is distinct from the inflammatory, infectious immune signa-

tures of HAP, we further enriched our dataset with an overall

lymphoid and myeloid cytokine profile of the different subpopu-

lations (Tables S2B and S2C). We introduced the statistical mea-

sure of the effect size (ES) to combine both significance and fold

change in a single statistical value, as proposed in previous clin-

ical trials (McGough and Faraone, 2009; Sullivan and Feinn,

2012). We computed the ES of the Mann-Whitney U test be-

tween the analyzed groups (Figure 1D). Applying the interpreta-

tion of ES by Cohen (0.1–0.3, small effect; >0.3 intermediate and

large effects) (Cohen, 1977), we set the threshold for the compar-

ison of mild versus severe COVID to 0.3. Because of the large
1580 Immunity 54, 1578–1593, July 13, 2021
number of features reaching the

threshold of 0.3 in the comparison of

COVID-19s versus HAP, we applied a

more stringent cut-off of 0.4 in order to

exclusively filter COVID-19s-specific fea-

tures. This revealed that mild and severe

COVID-19 exhibit distinct immune signa-

tures (represented by an ES > 0.3 and

seen in the upper part of the dot plot in

Figure 1D), but in addition, COVID-19s

and HAP could be distinguished by a

set of immune features (displayed in

the upper right square in Figure 1D;

threshold ES > 0.4 versus HAP). Immune

alterations in severe RSs (COVID-19s and

HAP) occurred within the T cell, NK cell,

monocyte, and DC compartments

(Figure 1E).
Taken together, COVID-19s presents immune features that

are both shared and distinct from other pneumonia and affect

all immune compartments except for B cells.

Shared T cell features between severe pathogen-
induced RSs highlight the emergence of
hyperinflammatory and exhausted subsets inCOVID-19s
Following selection of the common immunological trajectories

shared across severe RS patients (COVID-19s and HAP) (Fig-

ure 1D, upper left square), we further extracted their dynamic

manifestation in the COVID-19 cohort by correlation to disease

severity and analysis over time. The identified patterns revealed

predominantly the T cell compartment (Figures 2A, 2B, S2A, and

S2B; Table S3). The reduction in CD4� CD8� (TCRgd-enriched)

T cell frequency appeared to be progressive, reaching its lowest

during the second week of hospitalization (TP 3, days 6–9) (Fig-

ure 2C). Moreover, we observed significantly higher expression

levels of PD-1 in COVID-19s patients during the first 5 days of



Figure 2. Shared T cell features between severe pathogen-induced RSs highlight the emergence of hyperinflammatory and exhausted sub-

sets in COVID-19s

(A) Comparison of immune features derived from each leukocyte subpopulation between experimental groups. A dot plot displaying the ES calculated in HAP

versus COVID-19s (x axis; threshold 0.4) compared with the ES calculated in COVID-19m versus COVID-19s (y axis; threshold 0.3). Each dot represents one

immunological feature. The red box highlights immune features, which are associated with severe RS (COVID-19s and HAP), with a focus on changes within the

T cell fraction.

(B) UMAP with FlowSOM overlay of total T cells of combined samples. One thousand cells were subsetted from every sample from each cohort. T cell subsets

with transparent names do not contain immune features highlighted in (A).

(C) Median frequencies and 25th and 75th percentiles of FlowSOM-generated CD4� CD8� (TCRgd-enriched) immune cell cluster.

(legend continued on next page)
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hospital admission, predominantly affecting the CD4+ T cell

compartment, pointing to a potential functional deficit in T helper

(Th) cell immune responses (Figure 2D). Although in samples

from COVID-19m patients, PD-1 expression normalized at TP 5

(weeks 4–14), it remained elevated inmemoryCD4+ T cell subsets

in COVID-19s (Figure S2C). In contrast to PD-1, the detected up-

regulation of the inhibitory receptor CTLA-4 on PMA and ionomy-

cin-restimulatedCD4+effectormemory (EM)cells occurredonlyat

later stages of disease (TPs 3 and 4, days 6–15) (Figures 2E and

S2D). These findings point to a shared altered innate immune

response and signs of hyperinflammation and exhaustion within

the T cell compartment across all patients with severe RSs.

In order to interrogate the cytokine polarization, the cells were

briefly stimulated in vitro prior to spectral flow acquisition. The re-

sulting cytokine profile of stimulated lymphoid subpopulations

from COVID-19 patients showed significantly higher amounts of

IL-21, as well as a shift toward a cytotoxic phenotype indicated

byhigh levelsof granzymeBandperforin in theTandNKcell com-

partments, relative toHCs (FiguresS2EandS2F;datanot shown).

CD107aonTandNKcellswassimilar inCOVID-19s,COVID-19m,

and HCs (data not shown), suggesting not only equal cytotoxicity

but also degranulation capacity across COVID-19 disease

severity. The same applies for TNF, IL-4, IL-6, and IL-17A, which

failed to reach the cut-off ES of 0.3 when comparing mild and se-

vere COVID-19 (Figures 2F and S2G–S2J). However, we found

increased production of interferon-g (IFN-g), IL-2, and GM-CSF

in COVID-19s. Specifically, higher frequencies of IFN-g-express-

ingCD8+EM, TEMRA (CCR7�CD45RA+), andTCRgdT cells (Fig-

ure 2G) and IL-2-expressing TCRgd T cells were a common

feature of severe RSs shared by COVID-19 and HAP (Figure 2H).

Elevated frequencies of GM-CSF-producing CD4+ and CD8+

TEMRA cells positively correlated with COVID-19 severity in the

acute phase of disease (TPs 1 and 2) (Figures 2I, S2K, and S2L).

Single-cell RNA sequencing (scRNA-seq) analysis of blood cells

from COVID-19 patients, in absence of ex vivo stimulation, re-

vealed strong expression ofCSF2 (encoding forGM-CSF), partic-

ularly in CD4+ T cells (Figure S2M). Detailed differentially

expressed gene (DEG) analysis of CSF2 high- versus low-ex-

pressing CD4+ T cells indicated these cells as a hyperinflamma-

tory subset, strongly expressing TNF, IL21, TNFRSF4, GNLY,

CD40LG, CCL20, and ICAM1 and demonstrating low ANXA1

mRNA levels, among others (Figure S2N).

Overall, these data demonstrate a T cell compartment marked

by both hyperinflammatory and exhaustive features shared by

patients with severe COVID-19 and non-SARS-CoV-2-induced

RSs (HAP). Over time, this phenotype persists, particularly in dis-

ease courses of COVID-19s (Figure 2J).
(D) Median expression and 25th and 75th percentiles of PD-1 in FlowSOM-gene

(E) Median expression of CTLA-4 within CD4+ EM T cell subset of HCs shown in g

shown in red.

(F) Schematic overview of cytokine polarization profile comparing COVID-19s an

subpopulations (features reaching ES > 0.3). One thousand T cells were subsett

(G) Median frequency and 25th and 75th percentiles of IFN-g-positive cells in Flo

(H) Median frequency and 25th and 75th percentiles of IL-2-positive cells in Flow

(I) Correlation between frequency of GM-CSF expressing CD4+ (left panel) and C

combined TPs 1 and 2.

(J) Heatmap depicting the Z score of each T cell related immune feature (highlighte

visualized by intensity of red color scale. MFI, mean fluorescence intensity.

*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001, Mann-Whitney test, Benja
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Phenotypic alterations in innate immune signatures are
shared in severe COVID-19 and HAP
We further characterized the identified DC and NK cell features

shared by COVID-19s and HAP (Figure 3A; Table S3). To reveal

the dynamic changes over time, we displayed the COVID-19 co-

horts together with HCs as baseline and HAP patients as com-

parison. Lower expression of HLA-DR in CD56low CD16� NK

cells suggest a diminished cytotoxic response in COVID-19s

(Figures 3B–3D and S3A) (Erokhina et al., 2021). Similarly,

COVID-19s displayed reduced frequency of plasmacytoid DCs

(pDCs) (Figures 3E–3G and S3B). Although the pDC frequency

was also different fromHAP, the cut-offs of ESwere not reached.

Upregulation of the Fas receptor CD95 was detected in all DC

subsets, particularly on pDCs, at early TPs 1 and 2 (Figures

S3C and S3D). This might play a role in the loss of those cells

through Fas-mediated apoptosis.

To mimic SARS-CoV-2 infection in vitro, the PBMC samples

were stimulated for 8 h with the TLR7 and TLR8 agonist R848.

In response, intermediate and non-classical monocytes as well

as conventional DC2s (cDC2s) upregulated expression of the

chemokine receptor CCR2 (Figures S3E and S3F), but only the

cDC2-related feature reached the cut-off for being COVID-19s

specific (ES > 0.3 versus COVID-19m) and positively correlated

with the severity grade of SARS-CoV-2-mediated disease (Fig-

ure 3H). As CCR2 expression on DCs is a hallmark of inflamma-

tion and required for their migration to the inflamed lung (Kvedar-

aite et al., 2020; Nakano et al., 2017), this could explain the

invasion of DCs into the lungs of patients hospitalized with

severe COVID-19. The NK- and DC-specific dysregulation

described here was already apparent during the early phase of

the disease, and the vastmajority of these changes persisted un-

til TP 5 in COVID-19s patients yet resolved in patients with

COVID-19m (Figure 3I). In line with reduced pDC frequencies,

IFN-a levels in the serumof COVID-19s patients showed a robust

trend toward reduction compared with COVID-19m

(Figure S3G).

To summarize, patients with severe RSs show signs of dimin-

ished cytotoxicity combined with increased cell migration within

the NK cell and DC compartment independent of the underlying

pathogen.

Impaired antigen presentation distinguishes the
immune response to SARS-CoV-2 compared with other
respiratory pathogens
After defining several common immunological features charac-

terizing the immune landscape of COVID-19s in common with

HAP, we next extracted the features specific to SARS-CoV-2
rated immune cell clusters shown in (B).

ray, of HAP in blue, and of mild and severe COVID-19 patients across TPs 1–5

d COVID-19m. UMAP with FlowSOM overlay shows cytokine-producing T cell

ed from every sample from each cohort.

wSOM-generated immune cell clusters shown in F.

SOM-generated immune cell cluster shown in (F).

D8+ (right panel) TEMRA cells and the severity grade of COVID-19 patients in

d in A) comparedwith HCs for every TP. Both negative and positive changes are

mini-Hochberg (BH) correction. See also Figure S2.



Figure 3. Phenotypic alterations in innate immune signatures are shared in severe COVID-19 and HAP

(A) Comparison of immune features derived from each leukocyte subpopulation between experimental groups. A dot plot displaying the ES calculated in HAP

versus COVID-19s (x axis; threshold 0.4) compared with the ES calculated in COVID-19m versus COVID-19s (y axis; threshold 0.3). Each dot represents one

immunological feature. The red box highlights immune features, which are associated with severe RS, with a focus on changes within the monocyte, DC, and NK

cell fraction.

(B) UMAPwith FlowSOMoverlay of total NK cells of combined samples. One thousand cells were subsetted from every sample from each cohort. NK cell subsets

with transparent names do not contain immune features highlighted in (A).

(C) Median expression of various markers in FlowSOM-derived clusters shown in (B).

(D)Median expression and 25th and 75th percentiles of HLA-DR in FlowSOM-generatedCD56lowCD16�NK cell cluster shown in (B), combined for TP 1 and 2 (left

panel) or displayed for every individual TP (right panel).

(E) UMAP with FlowSOM overlay of total monocytes and DCs of combined samples. One thousand cells were subsetted from every sample from each cohort.

Monocyte and DC subsets with transparent names do not contain immune features highlighted in (A).

(F) Median expression of various markers in FlowSOM-derived clusters shown in (E).

(G) Median frequencies and 25th and 75th percentiles of FlowSOM-generated pDC immune cell cluster.

(H) Correlation betweenmedian expression of CCR2 in cDC2s following TLR7 and TLR8 stimulation against the severity grade of COVID-19 patients. All TPs have

been pooled in the left panel and individual TPs depicted in the right panel.

(I) Heatmap depicting the Z score of eachmonocyte and DC related immune feature (highlighted in A) comparedwith HCs for every TP. Both negative and positive

changes are visualized by intensity of red color scale. MFI, mean fluorescence intensity.

*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001, Mann-Whitney test, BH correction. See also Figure S3.
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infection. We selected all immune traits characterizing COVID-

19s (cut-off ES versus COVID-19m > 0.3), and to further

condense the signature uniquely existing in COVID-19s and be-

ing different from HAP, we set a strict cut-off ES of 0.4 versus

HAP (Figure 4A; Table S3). Building on the above-described
common myeloid features, there were also phenotypic changes

within this compartment that were specific to COVID-19s. Spe-

cifically, there was significantly lower expression of HLA-DR as

well as the co-stimulatory ligand CD86 across antigen-present-

ing cell (APC) subsets, which persisted throughout the duration
Immunity 54, 1578–1593, July 13, 2021 1583



Figure 4. Impaired antigen presentation distinguishes the immune response to SARS-CoV-2 versus other respiratory pathogens

(A) Comparison of immune features derived from each leukocyte subpopulation between experimental groups. A dot plot displaying the ES calculated in HAP

versus COVID-19s (x axis; threshold 0.4) compared with the ES calculated in COVID-19m versus COVID-19s (y axis; threshold 0.3). Each dot represents one

immunological feature. The red box highlights immune features, which are different in COVID-19s and HAP, with a focus on changes within the monocyte and DC

fraction.

(B and C) Median expression of HLA-DR (B) or CD86 (C) within classical monocytes of HCs shown in gray, HAP patients in blue, and COVID-19m and COVID-19s

patients across TPs 1–5 shown in red.

(D and E) Correlation between median expression of HLA-DR (D) or CD86 (E) in monocytes or DCs (TPs 1 and 2 pooled) against the severity grade of COVID-19

patients.

(F) Heatmap depicting the Z score of each monocyte and DC related immune feature (highlighted in A) compared with HCs for every TP. Both negative and

positive changes are visualized by intensity of red color scale.

(G and H) Median expression and the 25th and 75th percentiles of HLA-DR (G) or CD86 (H) in FlowSOM-generated monocyte and DC immune cell clusters.

*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001, Mann-Whitney test, BH correction. See also Figure S4.
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of our study and were not shared to this extent by patients with

mild COVID-19 disease (Figures 4B, 4C, S4A, and S4B). The pro-

tein expression of both HLA-DR and CD86 negatively correlated

with the severity of COVID-19, with highest significance of this

relationship within monocytes (Figures 4D, 4E, S4C, and S4D).

Although the apparent paralysis in the APC compartment fulfilled

the criteria for COVID-19s specificity (Figure 4F), this was driven

largely by more pronounced APC dysfunction in HAP compared

with HCs (Figures 4G and 4H). Taken together, the emerging

overall picture is of a myeloid compartment characterized by

impaired APC function, most likely due to emergency myelopoi-
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esis, in COVID-19s. However, the data suggest that this is a

feature shared across all patients with severe RSs and not spe-

cific to the immune response against SARS-CoV-2.

Distinct signatures of COVID-19s are exclusive to the
lymphocyte compartment
Although most of the alterations in the monocyte and DC

compartment were convergent in the two severe RSs, we iden-

tified COVID-19s-specific T and NK cell signatures (Figure 5A;

Table S3; ES for COVID-19s versusCOVID-19m> 0.3 and versus

HAP > 0.4). A focused analysis of all T cell subsets (Figure S5A)



Figure 5. Distinct signatures of COVID-19s are exclusive to the lymphocyte compartment

(A) Comparison of immune features derived from each leukocyte subpopulation between experimental groups. A dot plot displaying the ES calculated in HAP

versus COVID-19s (x axis; threshold 0.4) compared with the ES calculated in COVID-19m versus COVID-19s (y axis; threshold 0.3). Each dot represents one

(legend continued on next page)
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revealed a dramatic loss of CD56+T cells in COVID-19s as one of

those signatures (Figure 5B). This CD56+T cell reduction was

already apparent within the first week after COVID-19-related

hospital admission (TPs 1 and 2). As shown in the receiver oper-

ating characteristic (ROC) curve in Table S4, a cut-off for CD56+T

cell frequency among T cells of 2.3% can distinguish severe

COVID-19 patients from mild disease with sensitivity of 100%

at days 0–2 after hospital admission. This finding defines

CD56+T cell frequency as a powerful predictive biomarker for

COVID-19s evolution and furthermore suggests a role of these

cells in the first phase of disease.

In addition to the above-described upregulation of PD-1 pre-

dominantly in CD4+ T cells, higher expression of PD-1 by CD4+

EM cells turned out to be a feature unique to COVID-19s (ES

versus HAP > 0.4), which positively correlated with severity

grade (Figures 5C and S5B). Chronically stimulated T cells over-

express inhibitory receptors, including PD-1, and display poor

effector capacity (Ahmadzadeh et al., 2009; Crawford et al.,

2014; Huang et al., 2019a; Pauken and Wherry, 2015; Wu

et al., 2014). By comparing PDCD1 high- and low-expressing

CD4+ T cells using a scRNA-seq dataset (Zhao et al., 2021),

we foundPDCD1-high CD4+ T cells to express genes associated

with exhaustion (HAVCR2, LAG3, CTLA4, TIGIT, and BATF) as

well as reduced amounts of TCF7, TNF, IL2RA, TNFRSF4,

FAS, and MIKI67, associated with T cell activation (Figure S5C).

This dataset supports the notion that the T cell compartment in

COVID-19 patients is impaired or exhausted.

The protein expression of CD38, another activation marker,

across several T cell subsets positively correlated with COVID-

19 severity, with the highest significance (p < 0.0001, R2 =

0.24) in CD4� CD8� (TCRgd-enriched) T cells (Figures 5D and

S5D). Furthermore, we observed a loss of the regulatory protein

CD161 in CD4� CD8� (TCRgd-enriched) T cells in COVID-19s

(Figures 5E and S5E). This phenomenon is especially intriguing,

as CD4� CD8� (TCRgd-enriched) T cells share the transcrip-

tional signatures of CD161-expressing mucosa-associated

invariant T (MAIT) cells, a CD8+ T cell subset resembling

innate-like sensors andmediators of antiviral responses (Fergus-

son et al., 2014, 2016).

Although failing to reach the stringent cut-off for being a unique

COVID-19s-specific feature (ES versus HAP > 0.4), CD161 was

also expressed at a significantly lower level on immature and

CD56low CD16+ NK cells in the early phase of severe SARS-

CoV-2 related illness compared with mild disease (Figure S5F).
immunological feature. The red box highlights immune features, which are differ

fraction.

(B) Median frequencies and 25th and 75th percentiles of FlowSOM-generated C

(C) Correlation between median expression of PD-1 in CD4+ EM cells (TPs 1 and

(D) Correlation between median expression of CD38 in CD4� CD8� (TCRgd-enri

COVID-19 patients.

(E) Median expression and 25th and 75th percentiles of CD161 in FlowSOM-gen

(F) Correlation between median expression of CD95 in CD56high NK cells (TPs 1

(G) Schematic overview of cytokine polarization profile comparing COVID-19s and

(features reaching an ES > 0.3 versus COVID-19m and > 0.4 versus HAP). One t

(H) Median frequency and 25th and 75th percentiles of IFN-g-positive cells in Flo

(I) Heatmap depicting the Z score of each T and NK cell related immune feature

changes are visualized by intensity of red color scale. MFI, mean fluorescence in

(J) Median frequencies or expression of indicated populations and markers. Box

*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001, Mann-Whitney test, BH co
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Here, the kinetics of CD161 expression was low at the beginning

of disease with a delayed hyperreactivity in COVID-19s (Fig-

ure S5F). Further dissecting the NK cell compartment, CD95

expression in the CD56high NK subset positively correlated with

severity of COVID-19 and represents a unique characteristic spe-

cific to SARS-CoV-2 infection (Figures 5F and S5G). As in the DC

compartment described before, the significant and specific

reduction of this NK subset supports Fas-mediated, activation-

induced apoptosis as the mechanism underlying the shift from

effector to immature NK cells (Figure S5H).

Regarding the cytokine polarization profile, reduced produc-

tion of IFN-g in CD4+ central memory (CM) T cells was found

to be COVID-19s specific and reflects the loss of CD4+

CXCR3+ CCR6+ (Th1 Th17-enriched) T cells (Figures 5G and

5H). All features falling in the COVID-19s-specific category and

diverging from HAP recovered only partly, both in mild and se-

vere SARS-CoV-2-infected patients, pointing to a persisting

dysfunctional T and NK cell compartment (Figure 5I).

The recorded myeloid features in COVID-19s were even more

pronounced in the HAP patients (Figures 4G and 4H). In contrast,

several identified COVID-19s-specific T and NK cell features

were clearly different from what has been observed in HC and

HAP (Figures 5B, 5E, 5H, and 5J). Taken together, whereas

changes in the myeloid compartment are shared across severe

RS patients, our differential display approach extracted signa-

tures of T cell exhaustion and altered early antiviral innate

lymphoid response specific to the immune response to SARS-

CoV-2.

HLA profile links COVID-19 immunopathology to
impaired virus recognition
After defining the pathological immune landscape specific for

SARS-CoV-2 and distinct from other pathogen-induced pneu-

monias, we next explored the degree of correlation existing

across these and other COVID-19s-associated immune features

in order to depict the overall immune network underlying COVID-

19s. We therefore selected all signatures associated with

COVID-19s (ES versus COVID-19m > 0.3) from TPs 1 and 2

and, for each feature, computed Pearson’s r correlation values

visualized in a heatmap plot for each COVID-19s and HAP (Fig-

ure 6A). Given the power of this multi-dimensional, global anal-

ysis tool, it was possible to identify correlation patterns within

the immune network of the two investigated conditions, namely,

COVID-19s and HAP. Focusing on the interactive network
ent in COVID-19s and HAP, with a focus on changes within the T and NK cell

D56+T cell immune cell cluster.

2 pooled) against the severity grade of COVID-19 patients.

ched) and CD4+ EM T cells (TPs 1 and 2 pooled) against the severity grade of

erated CD4� CD8� (TCRgd-enriched) immune cell cluster.

and 2 pooled) against the severity grade of COVID-19 patients.

COVID-19m. UMAP with FlowSOM overlay shows cytokine-producing T cells

housand T cells were subsetted from every sample from each cohort.

wSOM-generated immune cell clusters shown in (G).

(highlighted in A) compared with HCs for every TP. Both negative and positive

tensity.

plots show the 25th and 75th percentiles.

rrection. See also Figure S5.



Figure 6. HLA profile links COVID-19 immu-

nopathology to impaired virus recognition

(A) Correlogram of all immune features (TPs 1 and

2) with ES COVID-19s versus COVID-19m > 0.3,

shown for COVID-19s and HAP. Red arrows

highlight immune features unique in COVID-19s

(ES versus HAP > 0.4). Black boxes 1–3 highlight

highly correlating immune clusters.

(B) Correlogram of immune features from TP 1 only

with ES COVID-19s versus COVID-19m > 0.3 with

HLA score 50. HLA score 50 represents the num-

ber of predicted tightly binding SARS-CoV-2

peptides of both HLA alleles of a patient. Red ar-

rows highlight SARS-CoV-2-specific immune

features (ES COVID-19s versus HAP > 0.4).

(C) Correlogram of immune features from TP 1 only

with ES COVID-19s versus COVID-19m > 0.3 with

routinely assessed clinical parameters. Red ar-

rows highlight highly correlating parameters.

(D) Correlation between LDH and granulocyte

counts (TP 1 only) against the severity grade of

COVID-19 patients.

See also Figure S6.
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underlying early and severe SARS-CoV-2-mediated disease, we

discovered distinctive associations between different branches

of adaptive and innate immunity, translating into correlation clus-

ters between myeloid and T cells (#1), myeloid and NK cells (#2),

and T and NK cells (#3) (Figure 6A). These associations were

weak in HAP, further supporting our claim of a SARS-CoV-2-

specific immune landscape that characterizes severe disease

courses.

Because of earlier evidence of SARS-CoV-2 peptide binding

to HLA molecules differs across genotypes (Nguyen et al.,

2020), we introduced next-generation sequencing (NGS)-based

HLA class I typing of 48 patients of our COVID-19 cohort. We

calculated the predicted number of tightly binding (<50 nm)

SARS-CoV-2-derived peptides per HLA class I gene (on the ba-

sis of every single underlying allele genotype) for each of our

typed individuals (Figures S6A and S6B; Table S5). This pre-

dicted binding capacity for HLA-A, HLA-B, and HLA-C was

further called HLA score 50. Next, we integrated this dataset
Im
with our single-cell immune profiling

analysis and correlated this HLA-A,

HLA-B, and HLA-C score 50 to all our

extracted severe COVID-19-associated

immune features (Figure 6B). This

multi-omics approach allowed us to

show that the majority of the severe

COVID-19-associated immune features

of the innate immune system (e.g.,

CD56+T cell frequency, HLA-DR in

monocytes and DCs) were correlated

with SARS-CoV-2 binding strength (Fig-

ure 6B), meaning that efficient HLA

binding capacity to SARS-CoV-2 pep-

tides may mitigate the alterations of

the innate immune system detected in

COVID-19s. Also, the COVID-19s-asso-
ciated GM-CSF production in CD8+ CM T cells positively corre-

lated with high HLA scores. To conclude, the data suggest that

weak HLA binding to SARS-CoV-2 peptides may at least in part

drive the immunopathology in COVID-19.

To translate the complex immune signatures into clinical use,

we correlated the COVID-19s-defining immune signatures with

routine clinical parameters. In order to identify stratifying bio-

markers in the very early phase of disease, we included features

significantly associated with COVID-19s at TP 1 only. As every

COVID-19 patient was graded according to the maximum

severity of disease during the longitudinal follow-up of the study

and this grading was allocated to every sample of the same pa-

tient, the included features of TP 1 fulfil the criteria to be predic-

tive. Several blood values and BMI (indicated by an arrow) were

highly correlated with our COVID-19s-defining immune signa-

tures, thereby translating these immunological findings into clin-

ical routine parameters (Figure 6C). To further validate these

promising candidates for outcome prediction, we linearly
munity 54, 1578–1593, July 13, 2021 1587



Figure 7. ACE2 expression in a CD4+ T cell subset increases after ex vivo stimulation

(A) Comparison of immune features derived from each leukocyte subpopulation between experimental groups. A dot plot displaying the ES calculated in HAP

versus COVID-19s (x axis) compared with the ES calculated in COVID-19m versus COVID-19s (y axis). Each dot represents one immunological feature. The red

box highlights the immune feature focused in this figure.

(B) Median expression of indicated markers in FlowSOM-derived clusters of unstimulated samples.

(C) Median frequency and 25th and 75th percentiles of ACE2-positive cells in a subset of unstimulated CXCR3+ CCR6+ (Th1 Th17-enriched) CD4+ T cells. All TPs

have been pooled.

(D) Median frequency and 25th and 75th percentiles of CXCR3+ CCR6+ (Th1 Th17-enriched) CD4+ T cells at each TP.

(E) Representative plot showing ACE2 and isotype staining within the T cell compartment of PMA and ionomycin-restimulated (5 h) COVID-19 samples.

(F) Median frequency and 25th and 75th percentiles of ACE2-positive cells in FlowSOM-generated immune cell clusters after PMA and ionomycin restimulation (5

h). All TPs have been pooled.

(legend continued on next page)
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correlated them with COVID-19 severity grade (Figures 6D and

S6C). Although the number of provided values was limited, and

several associations turned out to be significant but with low

R2 value, lactate dehydrogenase (LDH) and granulocyte counts

showed a strong correlation with worsening of COVID-19, thus

presenting easily applicable biomarkers (Figures 6D and S6D).

In conclusion, we provide a translational path forward based

on our differential immune map specific for severe SARS-CoV-

2 infection combinedwith predicted HLA class I binding capacity

to SARS-CoV-2 peptides, which can be used to guide therapeu-

tic approaches aimed at interrupting the immunopathologic

cascade of severe COVID-19.

ACE2 expression in a CD4+ T cell subset increases after
ex vivo stimulation
SARS-CoV-2 uses ACE2 as its receptor for cellular entry (Prom-

petchara et al., 2020; Zhou et al., 2020). To determine potential

entry sites within T cells, we measured ACE2 expression across

our immunemap.We did not identify ACE2 expression in steady-

state healthy T cell subpopulations, whereas samples from se-

vere RSs showed marginal expression, especially in the CD4+

CXCR3+ CCR6+ (Th1 Th17-enriched) subset (Figures 7A–7C,

S7A, and S7B) which was significantly reduced in COVID-19s

(Figure 7D). When we profiled the stimulated PBMCs mimicking

the COVID-19 inflammatory environment, we discovered a CD4+

T cell subpopulation, of which approximately 75%–80% ex-

pressed ACE2 (Figures 7E and 7F). This population emerged

from samples of both healthy and COVID-19 patients and ex-

pressed CD25, PD-1 and CTLA-4 (Figures 7G, 7H, and S7C).

Further analysis of this subset demonstrated no relevant overlap

with a specific cytokine polarization profile or FOXP3 expression

(Figures S7D and S7E). The presence of ACE2 expression on an

activated CD4+ T cell subset may provide a mechanism for virus

entry and contribution to the immunopathological network of

COVID-19.

DISCUSSION

The comparison of two cohorts of severe infectious RSs (COVID-

19s and HAP) driven by different pathogens allowed us to un-

cover unique immune signatures in SARS-CoV-2-mediated dis-

ease. Recent data describe the immunopathogenesis of HAP as

critical illness-related immuno-suppression (Roquilly et al., 2019)

characterized mainly by alterations in the IL-12-IFN-g axis (Ro-

quilly et al., 2017). Conversely, the COVID-19 immune response

includes traits also occurring in other severe RSs triggered by

other pathogens, such as influenza (Lee et al., 2020; Tian et al.,

2020). However, mainly because of the small cohort sizes and

lack of a comparable control group of patients with non-SARS-

CoV-2-driven severe RS, the COVID-19-specific immune signa-

ture remains elusive. Within our dataset, a global PCA of all im-

munophenotypes enabled a clear separation among COVID-

19s, COVID-19m, HAP, and HCs. However, there was a partial

overlap between COVID-19s and HAP, revealing some core im-
(G) Median expression of various markers in FlowSOM-derived clusters of PMA

(H) Median expression and 25th and 75th percentiles of PD-1 (left panel) and CT

ionomycin restimulation (5 h). All TPs have been pooled.

*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001, Mann-Whitney test, BH co
mune features associated with severe RSs independent from the

disease etiology.

Although previous studies described impairment in the mono-

cyte and DC compartment to be decisive for a severe COVID-19

course (Arunachalam et al., 2020; Kuri-Cervantes et al., 2020;

Merad and Martin, 2020; Silvin et al., 2020), features we

confirmed here, those were found to not be exclusive to

SARS-CoV-2 immunopathology. We confirmed loss of HLA-DR

and CD86 expression in APCs, a finding associated with emer-

gency myelopoiesis, where newly emerging myeloid cells show

reduced APC capacity (Schulte-Schrepping et al., 2020). Recent

data show the secretion of CCL2 by airway macrophages and a

concomitant upregulation of the CCL2 receptor CCR2 in periph-

eral blood monocytes of SARS-CoV-2-infected patients; thus,

extensive accumulation of monocytes and macrophages within

alveolar spaces in COVID-19 lung autopsies suggests recruit-

ment from circulation (Szabo et al., 2020). Our data support

this, but in addition, we observed that cDC2s also upregulated

CCR2 expression with an even greater ES than monocytes.

There is evidence for CCR2 being required for DC migration to

the inflamed lung, respectively, although this is not the case in

the steady-state condition (Nakano et al., 2015, 2017). Thus,

the declining number of cDC2s in the systemic circulation of

COVID-19 patients may be a reflection of cDC2 extravasation

into the affected lungs.

Alongside signatures shared in severe RSs, we also extracted

those specific to and unique in COVID-19s. These SARS-CoV-2-

induced adaptations were restricted to the T and NK cell

compartment. Several studies described upregulation of PD-1

and CD38 alongside other activation and exhaustion markers,

suggesting a hyperactivated and exhausted T cell compartment

(De Biasi et al., 2020; Chen andWherry, 2020). However, again, it

was unclear as to whether this emerging pattern in lymphocytes

is the result of severe RSs in general or is specific to the immu-

nopathology induced by SARS-CoV-2. We here describe an

overall picture of T cell exhaustion and altered early antiviral

innate lymphoid response unique to COVID-19s.

SARS-CoV-2 entry into the host cells is initiated by binding of

the virus to the cell surface transmembrane receptor ACE2,

which is predominantly expressed in epithelial cells of the lung,

intestine, and endothelial cells (Varga et al., 2020). Our analysis

revealed the ability of highly activated CD4+ T cells to express

ACE2. Others also detected ACE2-positive lymphocytes in lungs

of COVID-19 patients (Ackermann et al., 2020; Feng et al., 2020).

Moreover, CD4+ Th cell infection by SARS-CoV-2 occurs in an

ACE2-dependent manner (Pierce et al., 2020; Pontelli et al.,

2020). Compared with SARS-CoV, SARS-CoV-2 has a 10- to

20-fold higher affinity for host membrane ACE2 (Wrapp et al.,

2020). Thus, even low ACE2 expressionmay be sufficient for viral

entry. A direct infection of responding lymphocytes, leading to

cell death and impaired SARS-CoV-2 clearance, goes in line

with higher peripheral blood viral load positively correlating

with COVID-19 severity (Han et al., 2020). In conclusion, the abil-

ity for SARS-CoV-2 to directly infect T cells provides yet another
and ionomycin-restimulated (5 h) samples.

LA-4 (right panel) in FlowSOM-generated immune cell clusters after PMA and

rrection. See also Figure S7.

Immunity 54, 1578–1593, July 13, 2021 1589



ll
OPEN ACCESS Article
potential mechanism to describe the immunopathology of

COVID-19.

The cytokine storm in COVID-19 is pronounced as one of the

driving immunopathological features in SARS-CoV-2-mediated

disease worsening (Merad and Martin, 2020; Moore and June,

2020; Del Valle et al., 2020). Our single-cell profiling of 11 cyto-

kines did not result in higher frequencies of IL-6 and TNF (Del

Valle et al., 2020), for which high plasma levels were described

in COVID-19 patients, indicating that neutrophils, monocytes,

and endothelial cells at the site of infection likely account for

the dysregulated cytokine production. Nevertheless, we identi-

fied the cellular sources for GM-CSF as predominantly the

CD4+ and CD8+ TEMRA subset, a feature of severe COVID-19

shared with HAP, and documented correlation of the expression

with COVID-19 severity. Our data complement two recent re-

ports, which show that in particular, lung-invading T cells ex-

press GM-CSF (by using scRNA-seq) (Zhao et al., 2021) and

that GM-CSF serum levels are elevated in COVID-19 patients

(Thwaites et al., 2021). Supportive, elevated circulating GM-

CSF+ CD4+ T cell levels are predictive of poor outcomes in

sepsis patients (Huang et al., 2019b). Collectively, this suggests

that GM-CSF is an early driver of the underlying immunopatho-

logical cascade in COVID-19s, thereby being a promising thera-

peutic target (NRI, GEM TRIAL, ClinicalTrials.gov identifiers

NCT04400929 and NCT04411680; Bonaventura et al., 2020;

Bosteels et al., 2020; Lang et al., 2020; De Luca et al., 2020).

Using NGS-based HLA typing and further integration of this

dataset into our single-cell immune profiling analysis, this multi-

omics approach provides deep insights into COVID-19 immuno-

pathology and a potential genetic influence: while COVID-19s-

associated innate immune alterations were less pronounced

in patients with predicted high HLA class I binding capacity

to SARS-CoV-2 peptides, GM-CSF production in CD8+ CM

T cells, a feature associated with severe COVID-19 disease, was

increased. The occurrence of both mild and severe COVID-19-

associated immune features in patients with strong SARS-

CoV-2 recognition (high HLA score 50) could further explain the

inconsistent reports that attempt to link HLA class I binding ca-

pacity to SARS-CoV-2 peptides to COVID-19 severity (Ellinghaus

et al., 2020; Iturrieta-Zuazo et al., 2020). By combining single-cell

immune mapping with HLA genetics, we uncovered a link be-

tween HLA profile and impaired virus recognition in COVID-19.

Because of emerging follow-up studies, an increased number

of COVID-19 patients are described as experiencing prolonged

symptomatology. This phenomenon, referred to as ‘‘long

COVID,’’ affects about 10% of patients. An attributed reason

for long-lasting complaints is persistent tissue damage in severe

cases. Nevertheless, patients following mild SARS-CoV-2 infec-

tions also suffer from prolonged symptoms (Iadecola et al., 2020;

Mahase, 2020). We identified several immune features, predom-

inantly of the T and NK compartment, which did not rebound at

the end of our study, several weeks after infection. Thus, pro-

longed immune dysregulation, long after primary pathogen

encounter, could play a role in ‘‘long COVID.’’

An additional aspect of our study was to identify predictive

biomarkers of severe COVID-19 patient outcomes. An earlier

study identified the frequency of circulating MAIT cells to have

predictive value (Flament et al., 2021). Here we identified a dra-

matic, early loss of CD56+T cells in the circulating immune
1590 Immunity 54, 1578–1593, July 13, 2021
compartment of COVID-19s. Although others confirmed this

observation (Notarbartolo et al., 2021; Zingaropoli et al., 2021),

here we found this phenomenon indeed to not be shared across

severe RS patients but to be specific to the SARS-CoV-2 im-

mune response. The CD56+ T cell population includes NKT cells,

which are important for the production of an early wave of IL-4

promoting germinal center (GC) formation during viral infection.

Delay in GC formation in COVID-19 patients may be a direct

consequence of NKT cell migration to the airways (Dempsey,

2018; Fontana and Pepper, 2018; Jouan et al., 2020; Kaneko

et al., 2020). Translation of this finding into clinical routine diag-

nostics can easily be implemented using CD3 and CD56 to

calculate CD56+T cell frequencies upon hospital admission.

Across our three independent COVID-19 cohorts, a cut-off set

to 2.3% for CD56+T cell frequencies (among T cells) would

have identified all patients who later developed severe disease.

Early identification of patients at risk could help tailor their treat-

ment and improve the outcome.

Limitations of the study
Although we initially anticipated center-specific batch effects in

our multi-center study, this was not the case. However, our

HAP cohort consists of patients with severe pneumonia driven

by multiple pathogens, both bacterial and viral. The comparison

of COVID-19 patients with a pure viral pneumonia cohort could

help further specify the unique immune signatures of SARS-

CoV-2 and distinctive to other viruses. Using PBMCs as source

of analyzed immune cells allows easy implementation of our find-

ings (such as CD56+T cell frequency as a predictive biomarker)

to the clinics. Even though the simple measurement of circu-

lating CD56+T cell frequencies would have predicted all of our

COVID-19 patients who developed severe disease, larger

follow-up studies are needed to solidify this measurement as a

predictive biomarker for COVID-19 patient outcomes.
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(2019). The end of omics? High dimensional single cell analysis in precision

medicine. Eur. J. Immunol. 49, 212–220.

Hadjadj, J., Yatim, N., Barnabei, L., Corneau, A., Boussier, J., Pere, H.,

Charbit, B., Bondet, V., Chenevier-Gobeaux, C., Breillat, P., et al. (2020).

Impaired type I interferon activity and exacerbated inflammatory responses

in severe COVID-19 patients. MedRxiv. https://doi.org/10.1101/2020.04.19.

20068015.

Han, M., Xu, M., Zhang, Y., Liu, Z., Li, S., He, T., Li, J., Gao, Y., Liu, W., Li, T.,

et al. (2020). Assessing SARS-CoV-2 RNA levels and lymphocyte/T cell counts

in COVID-19 patients revealed initial immune status as a major determinant of

disease severity. Med. Microbiol. Immunol. (Berl.) 209, 657–668.

Hartmann, F.J., Bernard-Valnet, R., Quériault, C., Mrdjen, D., Weber, L.M.,

Galli, E., Krieg, C., Robinson, M.D., Nguyen, X.H., Dauvilliers, Y., et al.

(2016). High-dimensional single-cell analysis reveals the immune signature

of narcolepsy. J. Exp. Med. 213, 2621–2633.

Huang, A.C., Orlowski, R.J., Xu, X., Mick, R., George, S.M., Yan, P.K., Manne,

S., Kraya, A.A., Wubbenhorst, B., Dorfman, L., et al. (2019a). A single dose of

neoadjuvant PD-1 blockade predicts clinical outcomes in resectable mela-

noma. Nat. Med. 25, 454–461.

Huang, H., Wang, S., Jiang, T., Fan, R., Zhang, Z., Mu, J., Li, K., Wang, Y., Jin,

L., Lin, F., et al. (2019b). High levels of circulating GM-CSF+CD4+ T cells are

predictive of poor outcomes in sepsis patients: a prospective cohort study.

Cell. Mol. Immunol. 16, 602–610.

Iadecola, C., Anrather, J., and Kamel, H. (2020). Effects of COVID-19 on the

nervous system. Cell 183, 16–27.e1.

Iturrieta-Zuazo, I., Rita, C.G., Garcı́a-Soidán, A., de Malet Pintos-Fonseca, A.,

Alonso-Alarcón, N., Pariente-Rodrı́guez, R., Tejeda-Velarde, A., Serrano-
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

anti-human ACE2 (Biotin) (AC18F) Adipogen Life sciences Cat# AG-20A-0032B-C050; RRID: N/A

anti-human CCR2 (K036C2), BV605 BioLegend Cat# 357213; RRID:AB_2562702

anti-human CCR6 (G034E3), BV711 BioLegend Cat# 353435; RRID:AB_2629607

anti-human CCR7 (CD197)

(G043H7), BV785

BioLegend Cat# 353229; RRID:AB_2561371

anti-human CD11c (B-ly6), BUV661 BD Cat# 612968; RRID:AB_2870241

anti-human CD123 (IL-3R) (6H6), APC/

Fire 750

BioLegend Cat# 306041; RRID:AB_2750163

anti-human CD123 (IL-3R) (6H6), BV711 BioLegend Cat# 306029; RRID:AB_2566353

anti-human CD14 (M5E2), BUV737 BD Cat# 612763; RRID:AB_2870094

anti-human CD14 (T€uK4), Qdot800 Thermo Cat# Q10064; RRID:AB_2556449

anti-human CD141 (1A4), BB700 BD Cat# 742245; RRID:AB_2740668

anti-human CD152 (CTLA-4) (BNI3),

BB790-P

BD customized

anti-human CD16 (3G8), BUV496 BD Cat# 612944; RRID:AB_2870224

anti-human CD161 (HP-3G10), eFluor 450 Thermo Cat# 48-1619-41; RRID:AB_10854575

anti-human CD19 (HIB19), APC-Cy7 BioLegend Cat# 302218; RRID:AB_314248

anti-human CD19 (SJ25C1), PE-Cy5.5 Thermo Cat# 35-0198-42; RRID: AB_11218903

anti-human CD194 (CCR4) (1G1), BUV615 BD Cat# 613000; RRID:AB_2870269

anti-human CD1c (F10/21A3), BB660-P2 BD customized

anti-human CD25 (IL-2Ra) (M-A251),

PE-Cy7

BioLegend Cat# 356107; RRID:AB_2561974

anti-human CD27 (M-T271), BUV563 BD Cat# 741366; RRID:AB_2870866

anti-human CD279 (PD-1)

(EH12.2H7), BV421

BioLegend Cat# 329919; RRID:AB_10900818

anti-human CD279 (PD-1)

(EH12.2H7), BV605

BioLegend Cat# 329924; RRID:AB_2563212

anti-human CD28 (CD28.2), BV605 BioLegend Cat# 302967; RRID:AB_2800754

anti-human CD3 (HIT3a), APC-Cy7 BioLegend Cat# 300318; RRID:AB_314054

anti-human CD3 (Oct.03), BV510 BioLegend Cat# 317332; RRID:AB_2561943

anti-human CD3 (UCHT1), BUV805 BD Cat# 565515; RRID:AB_2739277

anti-human CD33 (WM53), BUV395 BD Cat# 740293; RRID:AB_2740032

anti-human CD38 (HIT2), APC-Cy5.5 Thermo Cat# MHCD3819; RRID:AB_1472718

anti-human CD4 (SK3), Spark Blue 550 BioLegend Cat# 344656; RRID:AB_2819979

anti-human CD45 (2D1), PerCP BioLegend Cat# 368506; RRID:AB_2566358

anti-human CD45 (HI-30), BUV805 BD Cat# 564915; RRID:AB_2744401

anti-human CD45RA (HI100), BUV395 BD Cat# 740298; RRID:AB_2740037

anti-human CD56 (HCD56), APC-Cy7 BioLegend Cat# 318332; RRID:AB_10896424

anti-human CD56 (NCAM16.2), BUV737 BD Cat# 612766; RRID:AB_2813880

anti-human CD57 (HNK-1), FITC BioLegend Cat# 359603; RRID:AB_2562386

anti-human CD8 (3B5), Ax Fluor 700 Thermo Cat# MHCD0829; RRID:AB_10372957

anti-human CD86 (2331 (FUN-1)), BUV805 BD Cat# 742032; RRID:AB_2871328

anti-human CD95 (FasR) (DX2), PE/Cy5 Thermo Cat# 15-0959-42; RRID:AB_11042290

anti-human CXCR3 (G025H7), BV650 BioLegend Cat# 353729; RRID:AB_2562628

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

anti-human CXCR5 (CD185)

(RF8B2), BV750

BD Cat# 747111; RRID:AB_2871862

anti-human GM-CSF (BVD2-21C11), PE BD Cat# 554507; RRID:AB_395440

anti-human Granzyme B (GB11), FITC BioLegend Cat# 515403; RRID:AB_2114575

anti-human HLA-DR (L243), BV570 BioLegend Cat# 307637; RRID:AB_10895753

anti-human IFN-g (B27),V450 BD Cat# 560371; RRID:AB_1645594

anti-human IgD (IA6-2), BV480 BD Cat# 566138; RRID:AB_2739536

anti-human IgG (polyclonal), Ax Fluor 647 Jackson immuno research Cat# 109-606-098; RRID:AB_2337899

anti-human IgM (MHM-88), PE/Dazzle594 BioLegend Cat# 314529; RRID:AB_2566482

anti-human IL-17A (BL168), APC-Cy7 BioLegend Cat# 512320; RRID:AB_10613103

anti-human IL-1b (H1b-98), Pacific Blue BioLegend Cat# 511710; RRID:AB_2124350

anti-human IL-2 (MQ1-17H12), BV711 BioLegend Cat# 500345; RRID:AB_2616638

anti-human IL-21 (3A3-N2.1), Ax Fluor 647 BD Cat# 562043; RRID:AB_10896655

anti-human IL-4 (8D4-8), APC BioLegend Cat# 500714; RRID:AB_1877159

anti-human IL-6 (MQ2-13A5), PE/

Dazzle594

BioLegend Cat# 501122; RRID:AB_2810622

anti-human IL-8 (E8N1), PE-Cy7 BioLegend Cat# 511415; RRID:AB_2565290

anti-human TCRgd (IMMU510), Pe-Cy5 Beckman Coulter Cat# IM2662U; RRID: N/A

anti-human TNF (MAb11), BV750 BD Cat# 566359; RRID:AB_2739709

Streptavidin, BB630-P2 BD customized

Biological samples

COVID-19 PBMC samples University Hospital Tuebingen, Germany N/A

COVID-19 PBMC samples Toulouse University Hospital, France N/A

COVID-19 PBMC samples Nantes University Hospital, France N/A

HAP PBMC samples Nantes University Hospital, France N/A

Healthy PBMC samples Nantes University Hospital, France N/A

Chemicals, peptides, and recombinant proteins

RPMI 1640 Seraglob Cat# M3413; RRID: N/A

Phosphate-buffered saline Homemade N/A

R848 Invivogen Cat# tlrl-r848; RRID: N/A

Human TruStain FcX BioLegend Cat# 422302; RRID:AB_2818986

Formaldehyde 4.0% PanReac Cat# 252931.1211; RRID: N/A

Benzonase nuclease Sigma-Aldrich Cat# E1014-25KU; RRID: N/A

Fetal bovine serum GIBCO Cat# A3160802; RRID: N/A

Penicillin Streptomycin GIBCO Cat# 15140-148; RRID: N/A

GlutaMAX GIBCO Cat# 35050-038; RRID: N/A

Phorbol 12-myristate 13-acetate Sigma-Aldrich Cat# P1585-1MG; RRID: N/A

Ionomycin Sigma-Aldrich Cat# I0634-1MG; RRID: N/A

1x Brefeldin A BD Cat# 555029; RRID:AB_2869014

1x Monensin BD Cat# 554724; RRID:AB_2869012

Live/Dead Fixable Blue Thermo Scientific Cat# L23105; RRID: N/A

DNA easy blood and tissue kit Quiagen Cat# 69504; RRID: N/A

Deposited data

spectral flow cytometry data this study https://doi.org/10.17632/ffkvft27ds.2

supplemental spreadsheets this study https://doi.org/10.17632/ffkvft27ds.2

scRNA-seq data (Zhao et al., 2021) https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE167118

Software and algorithms

Affinity designer Affinity https://affinity.serif.com/de/designer/

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

corrplot https://github.com/taiyun/corrplot

dplyr https://cran.r-project.org/web/packages/

dplyr/index.html

FlowJo V10.6.2. Tree Star https://www.flowjo.com/

FlowSOM (Van Gassen et al., 2015) https://github.com/SofieVG/FlowSOM

flowStats https://www.bioconductor.org/packages/

release/bioc/html/flowStats.html

ggplot2 https://cran.r-project.org/web/packages/

ggplot2/index.html

Harmony (Korsunsky et al., 2019) https://github.com/immunogenomics/

harmony

Hmisc https://cran.r-project.org/web/packages/

Hmisc/index.html

pheatmap https://cran.r-project.org/web/packages/

pheatmap/index.html

R studio (RStudio, 2015) https://www.rstudio.com/

R version 3.6.1 (R Core Team, 2013) https://www.r-project.org/

Seurat (v3.1.4) (Stuart et al., 2019) https://satijalab.org/seurat/

SingleR (Aran et al., 2019) https://github.com/dviraran/SingleR

Stats https://CRAN.R-project.org/

package=STAT

UMAP (McInnes et al., 2018) https://github.com/lmcinnes/umap

Other

Automated cell counter Bio-Rad N/A

Cryo thaw devices Medax N/A

Cytek Aurora Cytek Biosciences N/A

Illumina MiniSeq Illumina N/A

LABScan 3D instrument Luminex N/A
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Burkhard Becher

(becher@immunology.uzh.ch).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Spectral flow cytometry data generated during this study have been deposited to Mendeley Data: https://doi.org/10.17632/

ffkvft27ds.2.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

COVID-19 patient samples
Clinical routine data and blood samples for peripheral blood mononuclear cell (PBMC) isolation and cryopreservation were collected

at the University Hospital Tuebingen (Germany), the Toulouse University Hospital (France, in the frame of the COVID-BioToul bio-

bank, ClinicalTrials.gov Identifier: NCT04385108) and the Nantes University Hospital (France) (Table S1A). All donors had given writ-

ten informed consent and the study was approved by the regional ethical review board of Tuebingen (COVID-19), Toulouse (COVID-

19) and Nantes (COVID-19, HAP, Healthy) respectively. COVID-19 diagnosis was established by a positive PCR test. PBMC samples

were collected longitudinally at the indicated time points post-admission to the hospital (Table S1C). COVID-19 patients were graded

according to the maximum severity of disease during the study based on the WHO ordinal scale (World Health Organization, 2020b).

The WHO grade 1 and 2 were combined to grade 1 in our scale, the WHO grade 7 and 8 were combined to grade 6 in our
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categorization. The appropriate severity grade was then allocated to all samples of the same patient. Mean age of COVID-19 patients

was 62.2 years, the percentage of females was 40.4.

Human subjects with HAP and healthy samples
Bioresources: IBIS-sepsis (severe septic patients) and IBIS (brain-injured patients), Nantes, France. Patients were enrolled from

January 2016 to May 2019 in two French Surgical Intensive Care Units of one University Hospital (Nantes, France) and samples

collected in accordance to the guideline of standardization (CoBRA) (Bravo et al., 2015). Patients with immunosuppression were not

enrolled to the study. The criteria to diagnose hospital-acquired pneumonia were (1) radiological signs combined with (2) body temper-

ature > 38,3 C without any other cause or leukocytes < 4000/mm3 or > 12000/mm3 and (3) at least two of the following symptoms:

purulent sputum, cough or dyspnea, declining oxygenation or increased oxygen-requirement or need for respiratory assistance (Leone

et al., 2018). Hospital-acquired pneumonia were microbiologically confirmed with quantitative culture (for patients with antibiotics <

48h) (thresholds of 104 colony-forming units (CFU) per mL for a bronchoalveolar lavage). PCR for Herpes Simplex Virus and Cytomeg-

alovirus were performed in tracheal aspirates at day 1, day 7 and day 15 after ICU admission. The collection of human samples has

been declared to the French Ministry of Health (DC-2011-1399), and it has been approved by an institutional review board. Written

informed consent from a next-of-kin was required for enrolment. Retrospective consent was obtained from patients, when possible.

All patients were clinically followed up for 28 days. Control samples were collected from healthy blood donors, recruited at the Blood

Transfusion Center (Etablissement Français du Sang, Nantes, France). Mean age of HAP patients was 43.8 years, the percentage of

females was 8.7. Mean age of healthy controls was 52.0 years, the percentage of both females was 44.4.

METHOD DETAILS

Ex vivo reactivation of PBMCs
PBMCs collected in clinics were kept in cell culture medium (RPMI-1640, 10% fetal bovine serum (FBS; GIBCO), and 13 l-glutamine

(GIBCO) and 13 penicillin streptomycin (GIBCO)) supplementedwith 5Uml�1 benzonase (Sigma–Aldrich) and frozen in liquid nitrogen

until experimental analysis. Then, for spectral flow analysis, cells were thawed using Cryo thaw devices (Medax). Briefly, cells were re-

suspended incell culturemediumsupplementedwith2Uml�1benzonasebycentrifugation (300 r.c.f.; 7min;24�C).Cell countwascalcu-

lated using an automated cell counter (Bio-Rad). Due to the resulting cell count, cells were used for all panels or surface panel only. Sub-

sequent procedure including short-term reactivation of cryopreserved PBMCs and cytometry analysis were performed as described

previously (Galli et al., 2019; Hartmann et al., 2016). Briefly, 2 million (mio) cells were directly stained for cytometry analysis (surface

panel), while 1mio cells were restimulatedwith 50 ngml�1 phorbol 12-myristate 13-acetate (Sigma–Aldrich) and 500ngml�1 ionomycin

(Sigma–Aldrich) in the presence of 13Brefeldin A and 1xMonensin (both BDBiosciences) for 5 h at 37�Cor in case of R848 stimulation,

2.5mio cells using 2mgml�1 R848 (Invivogen) in the presence of 13Brefeldin A and 1xMonensin (both BDBiosciences) for 8 h at 37�C.

Surface labeling for spectral flow cytometry
For spectral cytometry, samples were washed in PBS and then resuspended in 100ml of Live Dead Fixable Blue mixture (Thermo Sci-

entific, 1:500) followed by a washing step. To avoid nonspecific binding, the samples were resuspended in 30 ml of True Stain FcX

(BioLegend) and incubated for 10 min at 4�C. Anti-human flow cytometric antibodies were purchased pre-conjugated (Tables S2A–

S2C). 70 mL of the first surface-antibody mixture was added and cells were incubated for 15 min at 37�C (Table S2A). After another

washing step, the second surface-antibody staining step (100 ml) was performed for 15 min at 4�C (Table S2A). Then, fixation was

performed using 150 ml of 2% PFA for 15 min at 4�C.

Intracellular cytokine labeling for spectral flow cytometry
For intracellular spectral cytometry, after surface-antibody labeling, cells were fixed and permeabilized using Cytofix Cytoperm re-

agent (BD Biosciences) for 30 min at 4�C. Intracellular labeling was then performed in 100 ml of 1x permeabilization buffer (Thermo

Scientific) for 11 h (Lymphoid cytokine panel, Table S2B) or 10 h (Myeloid cytokine panel, Table S2C) at 4�C.

HLA typing
For DNA extraction the DNA easy blood and tissue kit from Quiagen was used. HLA typing was performed using next generation

sequencing (NGS) with the NGSgo-AmpX v2 HLA kits (GenDx, Utrecht, Netherlands), and sequenced on an Illumina MiniSeq (Illu-

mina, San Diego, CA). Sequence data were analyzed with NGSengine (GenDx, Utrecht, Netherlands). For samples with low DNA

amount, HLA typing was also performed using sequence specific oligomers (SSO) with the LABType kits (One Lambda, Canoga

Park, CA). The bead-based analysis was run on a LABScan 3D instrument (Luminex, Austin, TX) and analyzed using the Fusion Soft-

ware (One Lambda, Canoga Park, CA). All assays were performed according to the manufacturer’s recommendations.

QUANTIFICATION AND STATISTICAL ANALYSIS

Acquisition and preprocessing of spectral flow cytometry data
Spectral cytometry sampleswere acquired on aCytek Aurora (Cytek Biosciences). Quality control of theCytek Aurora was performed

daily as instructed by the manufacturer. For downstream analysis, dead cells and doublets were excluded using FlowJo (TreeStar).
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Samples with viability lower than 10% and fewer than 500 live, CD45 positive cells were excluded. Cytometry data were transformed

with an inverse hyperbolic sine (arcsinh) function using the R environment (range 30 - 18000). To balance the influence ofmarkers with

different dynamic ranges, we performed background subtraction and channel-based percentile normalization using the 99.9th

percentile of each marker across the whole dataset (Bendall et al., 2011). Individual cytokine positivity thresholds were determined

based on the 99th percentile of the residual staining in an unstimulated or isotype-stained control sample.

Algorithm-based high-dimensional analysis of spectral flow cytometry data
Pre-processed data were downsampled to a maximum of 150’000 cells per donor for the analysis of the main populations, all cells

were used for analysis of the specific immune compartments. The high dimensional analysis was carried out using the R environment,

based loosely on the workflow described previously (Mair et al., 2016). Two-dimensional UMAP (Uniform Manifold Approximation

and Projection) projections were calculated using the umap package (McInnes, et al., 2018). All FlowSOM-based clustering was per-

formed on the whole dataset to enable identification of small populations, and the results were overlaid on the dimensionality reduc-

tion maps (Van Gassen et al., 2015). Principal component analysis was carried out in the stats package using the median activation

marker expression of all detected leukocyte subsets. The circles represent the core areas added by the default confidence interval of

68%, which facilitates the separation based on the PC1/2 explanatory rate of the overall difference inmeasured immune features. For

the correlogram, Pearson’s r correlation coefficients were computed using the Hmisc package and the resulting correlation matrix

was visualized using the corrplot package. All other plots were drawn using ggplot2. For longitudinal visualization, smoothed con-

ditional mean of the feature from the combined COVID-19 cohort was added in light gray.

Calculation of HLA score 50
Based on the study data of Nguyen et al. (Nguyen et al., 2020), the predicted HLA class I binding capacity to SARS-CoV-2-derived

peptides per patient was calculated by counting the number of all SARS-CoV-2-derived peptides which were predicted to be bound

by each specific HLA allele. The score 50 includes all SARS-CoV-2 peptides which were predicted for tight binding (< 50nm) to the

indicated HLA class I allele. The final HLA score 50 per patient represents the total number of tight binding SARS-CoV-2 peptides of

both alleles of the patient for HLA-A, HLA-B or HLA-C.

Single-cell RNA-seq analysis
For single-cell RNA-seq analysis we used a publicly available dataset of sorted CD45+ blood cells of COVID-19 patients (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE167118), of which 50-RNA single cell transcriptome (10x genomics) was per-

formed. For preprocessing, the feature-barcode matrices for all the sample were further processed by the R package Seurat

(v3.1.4). As a quality-control (QC) step, we first filtered out the cells in which less than 200 genes were detected in the blood samples.

To remove potential doublets, we excluded cells with total number of detected genes more than 5000. Low-quality cells with more

than 5% mitochondrial genes of all detected genes were removed. The LogNormalize method in Seurat was used to normalize the

scRNA-seq and batch effect correction was performed using Harmony. The R package SingleR, an automatic annotation method for

single-cell RNA sequencing (Aran et al., 2019) were then used to determine the cell types. The differential expression between

selected groups were calculated by the FindAllMarkers function (min.pct = 0.25, logfc.threshold = 0.25, Wilcoxon rank sum tests).

Statistical analysis
Frequencies of immune populations, cytokines, median expression values and absolute counts were compared with the non-para-

metric Mann–Whitney–Wilcoxon test and Benjamini-Hochberg correction for multiple testing, using the R package rstatix. For cor-

relation measurements, we used a linear regression model by applicating the lm() and summary() functions. P values of less than 0.05

were considered significant and are indicated by an asterisk (*) or the numerical value on the respective graphs.
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