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Abstract
In the first two segments of our COVID-19 trilogy we examined the failure of the scientists and policy-makers to favorably alter dynamics of the SARS-
CoV-2 pandemic. Containment policies such as lockdowns and closure of businesses, which came with great social and economic costs, had no 
meaningful impact on morbidity or mortality. The mRNA vaccines were an unqualified disaster: they neither halted viral spread nor conferred herd 
immunity and, in their wake, spawned unacceptably high morbidity and mortality rates: to data there have been approximately 1,183,493 COVID-19 
vaccine-related adverse event reports in the US-based Vaccine Adverse Event Reporting System (VAERS) including 25,641 deaths. Globally, this 
translates to about 23.67 million adverse events and about 512,820 deaths. Medical science has unleashed yet another mass casualty event which will 
likely surpass any of the pharmacologically-induced tragedies of the 20th century.

In this third part we examine the path not taken: a handful of cheap, widely available, home-based therapies—ozone preconditioning, hydroxychloroquine, 
and light/vitamin treatment—which, had they been implemented early in the pandemic could have reduced morbidity and mortality by 80% or more. We 
estimate these interventions could have prevented about 4.8 million deaths globally and 768,000 in the US and in the process put an early end to the 
pandemic. Contrary to claims made by COVID-19 czar Anthony Fauci, there is an abundance of evidence in the medical literature in support of the very 
treatments he rejected out-of-hand. Moreover, the evidence was present well before the pandemic but was ignored by medical scientists. We conclude 
by discussing implications of the fraudulent mRNA vaccine scheme and the dark web of manipulation and disinformation promulgated by those who 
sponsored this dangerous and ill-conceived experiment. The pandemic sounds a clarion call mandating widescale reform of the healthcare system, 
medical-industrial complex, and their incestuous relationship with governmental and academic oversight bodies.

Introduction

In the first two segments of our COVID-19 trilogy we 
examined the abysmal failure of the science community 
and policy-makers to curtail the dynamics of the SARS-
CoV-2 pandemic. Mitigation or containment strategies, 
which came with great social and economic costs, had no 
meaningful impact on morbidity or mortality. The mRNA 
vaccines were an unqualified disaster: they neither halted 
viral spread nor conferred herd immunity and, in their 
wake, spawned a laundry list of disabling side effects. In 
the process, medical science has unleashed yet another 

mass casualty event which, in all likelihood, will surpass 
any of the pharmacologically-induced tragedies of the 20th 
century.

One of the profoundly disturbing aspects of the pandemic 
was suppression of views that ran contrary to the science 
narrative. Social media outlets such as YouTube, Facebook 
and Twitter censored alternative content. News networks 
like CNN incessantly reported biased pro-vaccine accounts 
while ignoring the accumulating mass of counterfactual 
evidence that began to surface in the summer of 2021. As 
a consequence, they disseminated a fog of disinformation. 
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Not only did such tactics undermine basic scientific 
and democratic principles but, as we shall see, greatly 
amplified the carnage of the pandemic and cost many 
more lives.

In this third part of the series we examine the path not 
taken: a handful of cheap, widely available, home-based 
therapies which, had they been implemented in a timely 
manner, especially in the early months of the pandemic 
before vaccines were even available, could have drastically 
reduced morbidity and mortality—by up to 80% and 
probably more. Contrary to claims made by authoritative 
voices, there was and is an abundance of evidence in the 
medical literature in support of the very treatments that 
mainstream medicine rejected.

We conclude by discussing implications of the fraudulent 
mRNA vaccine scheme and the dark web of manipulation 
and disinformation promulgated by those who sponsored 
this dangerous and poorly conceived experiment. The 
hidden subtext revolves around betrayal of public trust. 
The pandemic sounds a clarion call mandating widescale 
reform of the healthcare system, medical-industrial 
complex, and their incestuous relationship with 
governmental and academic oversight bodies.

Before the Storm

We have defined the tendency to become infected with 
SARS-CoV-2 and to express symptoms as a state of 
susceptibility or, conversely, lack of resistance. Such 
susceptibility takes origin in the deficient functions of the 
immune system as a result of its inability to contain and 
incapacitate the virus. For most of the 20th century immune 
protective functions were regarded to be secondary to 
the synthesis and release of neutralizing antibodies. 
As we have seen, however, the antibody response is far 
downstream from the primary locus of function which 
resides in the phagocytic activity of cells like macrophages 
and neutrophils. For this reason, early immunologists like 
Metchnikoff and Bordet conceived immune function as 
part of an organized internal digestive system.

The ability of the phagocytic system to contain SARS-
CoV-2 in the interstitial fluid space is the crucial 
determinant that distinguishes asymptomatic viral 
invasion from full-blown infection. Once phagocytic 
barrier functions have been breached systemic activation 
of the immune response by the cytokine system ensues 

along with symptoms like fever, fatigue, weakness, cough, 
shortness of breath, body aches and more. One observes 
varying states of susceptibility related to such cellular 
functions across the age spectrum in the population.

According to a 2021 Centers for Disease Control (CDC) 
report there is marked age-related risk stratification for 
death secondary to COVID-19 infection. Data indicate 
that the mortality rate in the 0-17 year range is only 
about 0.002% or 20 per million. When infected, children 
usually have mild symptoms and are more likely to be 
asymptomatic. This same population typically has lower 
antibody responses [1-7]. Mortality risk jumps by nearly 
25-fold in the 18-49 year range to about 0.05% or 500/
million; by 300-fold in the 50-64 year group to 0.6% or 
6,000/million; and, astonishingly, by 4500-fold in the 
65+ year range to about 9% or 90,000/million [8]. Clearly, 
risk is not spread evenly across the population.

By the same token across all age groups we observe a 
markedly heightened risk for severe COVID-19 disease 
and death in those with pre-existing chronic conditions 
like diabetes, hypertension, obesity, heart disease, 
renal disease, cirrhosis, COPD, cancer, and frailty [9-
21]. Individuals with such conditions are more likely to 
require hospitalization, have longer hospital stays, be 
admitted to the ICU, require mechanical ventilation, and 
experience various organ failure syndromes. Having a 
single co-morbidity like diabetes or hypertension raises 
the risk for adverse COVID-19 outcomes by up to 2-3-
fold depending on the study. And as we have seen, those 
with severe disease tend to express higher antibody levels 
[22-28].

In part I of the series we provided evidence linking such 
adverse outcomes to impaired intracellular digestion, 
i.e., autophagy, which, in reality, represents the basis for 
what scientists call immunity. Intracellular digestion, a 
lysosomal function, is a highly conserved activity shared 
by all cells which has evolved into a specialized function in 
phagocytic immune cells. Autophagy consists of a series 
of acid-dependent, energy-driven molecular pathways 
that evolved for the purpose of degradation and recycling 
of aged and dysfunctional cellular structures. Impairment 
of autophagy precedes a plethora of pathologic 
states like inflammation, aging, metabolic disorders, 
neurodegenerative, cardiovascular and renal diseases as 
well as cancers [29-34].
Autophagic function is highly dependent on the continued 
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availability of aerobic energy substrates like NADPH and 
ATP and when mitochondrial dysfunction occurs, as during 
periods of oxidative stress or inflammation, degradative 
and recycling functions are impaired. Oxidative stress 
diminishes mitochondrial function leading to buildup of 
reactive oxygen species and acids, NLRP3 inflammasome 
formation, and initiation of the so-called cytokine storm 
[35-45]. All such intracellular stress-related disturbances 
are present in full-blown COVID-19 infection [46-63].

In part I and in multiple earlier papers, we demonstrated 
the presence of a blood-borne energy field generated by 
the systolic and diastolic motions of the heart. Energy 
substance flows through the blood and interstitial 
fluid compartment and, ultimately, is transported by 
ion channel mechanisms across cell membranes into 
the cytoplasm. Interruption of energy flow triggers 
mitochondrial dysfunction, oxidative stress, and the 
inflammatory response. The critical phase of the cardiac 
cycle is diastole during which magnetic energy is drawn 
into the blood and produces the outward motion of the 
ventricles and arterial walls. It is not at all coincidental 
that diastolic dysfunction is associated with virtually all 
the same chronic disorders as seen with disturbances in 
cellular autophagy [64-99].

Clinical phenomena associated with COVID-19 infection 
are mediated by widespread inflammation originating 
in the vascular endothelium resulting in impaired 
diastolic function and energy generation which, in turn, 
diminishes intracellular digestion by phagocytes. The 
energy deficit also results in formation of autoantibodies 
that cross-react with the body's own components to 
promote cell death with spillage of contents like nucleic 
acids into the interstitial fluid space. As a consequence, 
neutrophil extracellular traps, large agglomerates of 
cellular debris, accumulate which further amplify the 
spiral of deterioration. Autoimmune mechanisms induce 
platelets to release clot-promoting substances that 
induce widespread intravascular thrombosis further 
compromising organ function. All these events are 
downstream from a primary energy deficit.

In an earlier series of papers, we established the existence 
of a complex body-wide energy field driven by aether, 
the all-encompassing energetic precursor substance first 
described by Aristotle nearly 2400 years ago [100-103]. 
The aether concept was rejected by physicists at the turn of 
the 20th century but in recent decades has been recognized 

to be indispensable in explaining a multitude of energy-
related phenomena. We described three intertwined and 
interconvertible primary energy forms in living bodies: 
the magnetic, taking origin in the vascular system; the 
radiant, deriving from external sunlight, generated in the 
interstitial fluid space beneath the skin; and the dielectric, 
in play at the cellular and molecular level and mediated 
primarily by electro-ionic mechanisms.

Given the primacy of energy metabolism in the economy of 
living bodies and the inescapable relation between energy 
deficiency and the pathologic alterations of COVID-19, 
i.e., diastolic dysfunction, mitochondrial dysfunction, 
inflammation, impaired autophagy, immune dysfunction, 
and hypercoagulability, it is obvious that in all cases the 
primary therapeutic strategy must be replenishment of 
the energy debt.

By the same token, the earliest manifestation of the 
syndrome, constitutional symptoms like fatigue, 
weakness or fever, are premonitory signs of energy 
depletion. At this juncture the gap between susceptibility 
and resistance must be bridged: all subsequent 
developments of COVID-19 infection are only expressions 
of a progressive and mounting energy debt.

By the time hospital-based treatments are initiated, 
often 10-12 days after symptom onset, individuals are in 
more advanced energy depletion. Customary treatments 
like anti-coagulants, steroids, immune-suppressives 
or anti-virals block downstream effects but fail to 
address the primary energy shortage. Based on such 
considerations, it is axiomatic that all therapeutic efforts 
should be initiated as early as possible while individuals 
still have adequate energy reserves to mount a restorative 
response. Repletion of energy flow corrects the cellular 
disturbances, augments autophagy and phagocytosis 
and, as a consequence, enhances resistance.

Ozone Preconditioning

Of the therapeutic approaches intended to augment 
energy flow and boost resistance ozone has perhaps the 
most impressive résumé. It ties into a fascinating episode 
in 20th century molecular biology that highlights yet 
another failure of the science community to integrate and 
synthesize its own experimental evidence into a coherent 
body of knowledge.
In the mid-1980s Charles Murry and colleagues, 
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seeking to unravel pathologic mechanisms of heart 
attack, conducted an experiment to determine whether 
intermittently reopening the coronary arteries to allow 
for brief return of blood flow altered the course of cellular 
injury [104]. In a control group of dogs, a coronary artery 
was clamped for 40 minutes to assess the extent of 
infarct damage. Another group underwent a series of four 
5-minute arterial occlusions interrupted by 5-minute 
intervals of reperfusion. Afterward the artery was 
clamped for 40 minutes. To their astonishment, animals 
that received preconditioning (PC) pulses had only about 
25% of damage as the control group.

Preconditioning is now regarded as the most powerful 
innate form of protection ever discovered. It has game-
changing potential and points to novel ways of addressing 
diseases science has been attempting to solve for decades 
with little or no success. In over 35 years since its discovery 
tens of thousands of reports have appeared in the research 
literature detailing its various aspects and yet, to date, 
scientists are unable to explain its basis.

The protection afforded by the PC phenomenon has been 
widely substantiated. When the PC sequence is applied 
prior to a prolonged ischemic episode a 2-3h period of 
protection ensues during which ischemia-mediated 
damage is markedly diminished. Biochemical analysis 
indicates that PC enhances mitochondrial function and 
reduces acid formation. Surprisingly, cardiovascular 
functions like endothelial-dependent vasodilation are 
preserved and the myocardium becomes resistant to 
potentially lethal cardiac arrhythmias [105-114].

Some scientists argued that ATP-sensitive potassium 
channels mediate the effect but studies were inconclusive. 
Others argued that nitric oxide is a key player while still 
others pointed at oxygen-derived free radicals. Various 
substances such as neurotransmitters, erythropoietin, 
and heat shock proteins have all been proposed but to 
date no convincing molecular explanation for the PC 
phenomenon has come to light [115-125].

A 1993 study found that PC pulses applied in one vascular 
territory of the heart protected the rest of the heart 
from prolonged arterial occlusion [126]. Researchers 
hypothesized that protection was induced by factor(s) 
'activated, produced, or transported throughout the 
heart' by brief periods of ischemia. Several years later 
another study found reduction in myocardial infarct size 

in rabbits after administration of PC pulses to skeletal 
muscle [127]. Now called remote preconditioning, it 
implicates a body-wide causal nexus that, to date, has 
resisted all explanatory attempts based on molecular and 
cellular mechanisms.

Reports soon followed describing protection after PC 
pulses in multiple organs besides the heart, including the 
brain, liver, intestines, kidneys, stomach and lungs [128-
141]. Preconditioning pulses applied to any vascular bed 
confer body-wide resistance to prolonged ischemia. The 
PC response, quite clearly, originates in the cardiovascular 
system and blood and diffuses throughout the body. 
Reports suggest beneficial effects are transferable from 
one animal to another by transfusion of blood or bodily 
fluids [142-144].

In 1996 a study reporting a complex temporal signature to 
the PC phenomenon confounded matters even more [145]. 
The initial period of heightened resistance to ischemic 
injury disappears after about 2-3h but then protective 
effects recur in echo-like fashion about 24h later and 
persist for up to 48-72h. Called the second window of 
protection, effects are associated with the appearance 
of various mediator substances in the blood and thus is 
believed to reflect enhanced gene transcription [146, 147]. 
Such gene activation is driven by an influx of energy into 
the cell.

Over the years it became recognized that the PC 
response could be induced by physiologic means such as 
hyperthermia, exercise, cardiac pacing or, conversely, 
by pharmacologic substances like ethanol, volatile 
anesthetics, and various toxins [148-166]. This is where 
ozone, possibly the most powerful PC agent yet discovered, 
comes into play. Through the studied effects of ozone, the 
enigma of the PC phenomenon has finally been resolved. 
We described the ozone-mediated PC response in greater 
detail in an earlier piece [167].

Ozone, tri-atomic oxygen (O3), a toxic environmental 
gas, was recognized nearly 200 years ago in areas 
surrounding lightning strikes and referred to as 'the smell 
of lightning.' When in excess in atmospheric air ozone 
produces difficulty in breathing, cough, nasal congestion, 
tear formation, chest discomfort and, in susceptible 
individuals, predisposes to asthma attacks, chest pain and 
occasional heart attack. A powerful oxidant, ozone diverts 
energy intended for cellular use resulting in impaired 

https://www.thegms.co/publichealth/pubheal-rw-22042302-references.pdf


COVID-19 and the Unraveling of Experimental Medicine - Part III

Thorp KE, Thorp JA, Thorp EM. COVID-19 and the Unraveling of Experimental Medicine - Part III. G Med Sci. 2022; 3(1):118-158. 
https://www.doi.org/10.46766/thegms.pubheal.22042302

122*Hyperlink to 1,366 references for COVID-19 vaccine associated complications:
https://www.thegms.co/publichealth/pubheal-rw-22042302-references.pdf

mitochondrial function, diminished ATP synthesis, 
production of reactive oxygen species and a host of toxic 
intermediary compounds.

In the 1970s sporadic reports attributed paradoxical 
beneficial effects to ozone in various diseases. In the late 
1980s studies described beneficial results in HIV patients 
[168-171]. Later reports described enhanced immune 
function [172-181]. The list of disorders that responded 
favorably to ozone treatment grew dramatically: 
autoimmune conditions, heart disease, peripheral 
vascular disease, fibromyalgia, neurodegenerative 
diseases, renal and gastrointestinal disorders, various 
cancers, healing of wounds chronic pain and more [182-
236]. Reports describe beneficial effects in COVID-19 
infection [237-254].

PC comprises two opposing aspects: the immediate 
consequences of the toxic insult followed by the 
protective response initiated to counteract its noxious 
influence. Once in contact with body fluids, ozone, 10-
15X more soluble in water than diatomic oxygen (O2), 
immediately solubilizes. Dissolved ozone is anüberenergy 
sink that draws electron-equivalents from biomolecules 
leaving them in a depleted (oxidized) state. This results 
in conversion of lipids in plasma and cell membranes 
into various oxidation products which, in turn, lead to 
formation of reactive oxygen species and intracellular 
injury [255-263]. Such brief insults are then counterpoised 
by a striking release of energy into the blood that results 
in the initial 2-3h window of PC protection.

Blood cells, in particular erythrocytes (RBCs), are among 
the first to experience ozone's oxidative effects and mount 
a response. Highly metabolically active, RBCs form a large 
part of the blood with an estimated mass of up to 5 pounds 
(2.3kg) in an average adult. Upon contact with ozonated 
fluid, RBCs undergo a decrease in energy production, in 
the 5-25% range over about 15-20 minutes, and then 
respond with a dramatic rebound surge in energy release 
along with an outpouring of antioxidant compounds. 
Ozone induces up-regulation of enzymes in RBCs 
resulting in enhanced production of NADPH and ATP with 
energy infusion into the blood and neutralization of the 
detrimental oxidizing effects of ozone [264-268].

Heightened energy output by the RBC mass translates 
directly into increased blood flow and energy delivery to 
peripheral tissues. RBCs release large amounts of nitric 
oxide (NO) in response to oxidative stress that not only 

increases RBC hardiness and deformability but interacts 
with the vascular endothelium to maintain active arterial 
dilation which, as we know, is a reliable proxy for blood 
energy content [269-280].

It is apparent that the first phase of the PC response, 
aimed at augmenting blood energy levels, is responsible 
for orchestrating subsequent cellular events. Energy 
currents, carried in the interstitial fluid space, enter cells 
via ion channels, enhance mitochondrial function and 
intracellular energy metabolism and thereby induce a 
plethora of genes that actively counteract oxidative stress. 
The second window of protection is clearly driven by gene 
induction: critical response pathways include nuclear 
factor erythroid 2-related factor 2 (Nrf2) and the heme 
oxygenase-1 enzyme (HO-1) system [281].

The powerful antioxidant and anti-inflammatory effects 
unleashed throughout the body by low dose ozone 
administration are mediated through activation of the 
transcription factor Nrf2. Nrf2, master regulator of 
redox balance, binds to over 200 different genes, known 
as the antioxidant response element (ARE), and effects 
transcription of cytoprotective substances like heat 
shock proteins, antioxidant and detoxification molecules, 
enzymes involved in synthesis of glutathione, a host of 
growth factors like vascular endothelial growth factor 
(VEGF), erythropoietin (EPO) and more. The Nrf2-
driven battery of gene products also effects breakdown 
and/or refolding of misfolded proteins, DNA repair, 
mitochondrial rebuilding, autophagy regulation, as well 
as intracellular metabolism. Impaired Nrf2 function is a 
hallmark of many chronic disease conditions [282-288].

Ozone is cheap and easily generated by passing oxygen 
across a voltage gradient simulating a lightning 
strike. Various routes of administration are employed: 
autohemotherapy, which involves removing a small 
aliquot of venous blood, exposing it to ozone, and 
reinjecting it into the vein; rectal or vaginal insufflation 
of ozone gas; direct intravenous (IV) injection of ozone 
gas; IV infusion of ozonated saline solution; topical 
administration of ozonated oil preparations.

All of the various approaches are safe and side effects 
virtually non-existent. Water-based approaches are 
hampered by instability and volatility and must be 
administered straight away. We developed an infusion 
method for a drinkable preparation in which stability 
is preserved for at least 4 weeks. We have used the oral 
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route exclusively since June, 2021 and have observed no 
significant differences compared with the intravenous 
infusion route.

We have treated several hundred COVID-19 patients with 
ozone in the outpatient setting. Many individuals had 
multiple comorbidities and presented with moderate-
to-advanced disease including respiratory difficulty and 
low oxygen saturations; some had radiologic evidence 
of COVID-19 pneumonia. Ozone combined with other 
adjuvant therapies relieved symptoms, shortened the 
course of disease, and appeared to decrease morbidity 
especially in those who sought treatment early in the 
course of the infection.

Enhancing Dielectric Capacitance

The second strategy for augmenting the body's energy 
economy involves boosting cellular metabolism and 
mitigating inflammation. The archetypal substances for 
this are the aminoquinolines, i.e., chloroquine (CQ) and 
hydroxychloroquine (HCQ), derivatives of quinine, which 
have been used for centuries to interrupt the inflammatory 
cycle [289-291].

Anthony Fauci claimed there was no evidence to support 
HCQ in COVID-19 infection but he was flat out wrong. 
Fauci overlooked a nearly 400-year history of quinine-
related compounds and their striking capacity to modulate 
all kinds of inflammation. Well before the COVID-19 
pandemic multiple studies showed efficacy of CQ against 
the original SARS coronavirus infections and later against 
Middle East Respiratory Syndrome virus which is also a 
coronavirus [292-294]. Based on the mediocre clinical 
track record of remdesivir our COVID-19 czar would 
have been well-served sticking with this time-honored 
strategy.

The aminoquinoline issue has split the science community 
and, ultimately, begs the question, 'what is science?' 
[295]. Multiple meta-analyses from across the globe 
failed to find beneficial effects from these substances in 
COVID-19-infected individuals [296-301]. End of story? 
No. The majority of studies were in hospitalized subjects 
with or without multiple co-morbidities, who may or may 
not have been on mechanical ventilation, who may or may 
not have received other treatments and in whom dosages 
varied across the spectrum. But medicine is a science of 
individuals and not an amorphous mass of statistical data. 

Trends and outcomes do not always align.

We failed to identify a single pooled-data study that 
methodically examined the interactions between timely 
HCQ administration, dosing considerations and pre-
existing co-morbidities on clinical outcomes. COVID-19 
infection is an energy deficient state the severity of which 
is directly proportional to the energy debt. It goes without 
saying that outcomes of all individuals in more advanced 
states of disease will be worse regardless of the therapy 
employed. Studies point to lack of beneficial outcomes 
with all conventional therapies including antiviral agents 
[302].

More troubling is the bias of the academic science 
community [303]. According to one meta-analysis, 
there was stark variation in CQ/HCQ outcome studies 
between the US and the rest of the world. Of 68 studies 
originating in the US, 39 (57.4%) were unfavorable while 
only 7 (10.3%) reported favorable results. Of 199 studies 
originating elsewhere, 66 (33.2%) were unfavorable, 
69 (34.7%) favorable and 64 (32.2%) indeterminate. 
Studies with at least one US main author were 20.4% (P 
< 0.05) more likely to report unfavorable results than 
non-US studies. Study authors concluded that such bias 
contributed to dissemination of unfavorable results, i.e., 
misinformation, regarding CQ/HCQ. Science, it seems, is 
not immune to the dramatic cultural polarization which 
has taken place during the pandemic.

Then there is the notorious meta-analysis of 96,000 
hospitalized COVID-19 patients from 671 hospitals 
across the globe by Harvard cardiologist Mandeep Mehra 
published in Lancet in May, 2020 which found no benefits 
from CQ/HQ therapy and was supposedly associated with 
increased risk of cardiac arrhythmias and death. The 
article was cited by Fauci to support his claim that these 
substances were ineffective. Mehra's study was later 
found to be fraudulent and subsequently retracted by 
Lancet [304].

Multiple studies conducted during the pandemic both 
in COVID-19 hospitalized subjects or outpatients found 
benefits with HCQ either alone or in combination with 
other agents such as zinc and azithromycin [305-313]. 
Hospital-based studies found shorter length of stay, 
decreased likelihood of ICU transfer and death, as well as 
shortened period of viral shedding. One large Italian study 
found a 30% lower death rate in hospitalized patients 
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given HCQ [314]. In a study of 2541 hospitalized patients, 
HCQ alone had a 13.5% death rate, HCQ + azithromycin 
20%, azithromycin alone 22% versus 26.4% with 
standard treatments [315]. Another hospital-based study 
of 8075 subjects found death rates of 17.7% in HCQ-
treated subjects versus 27.1% in the no-HCQ limb [316]. 
These are impressive results by any measure.

In a 2020 American outpatient study, 144 COVID-19-
infected subjects treated with HCQ + zinc + azithromycin 
were compared with 377 untreated controls. Of the 
treated subjects only 4 (2.8%) required hospitalization 
versus 58 (15.4%) of the untreated group. There was one 
death in the treated group (0.7%) versus 13 (3.4%) of 
untreated subjects [317]. In an intriguing 2020 Brazilian 
epidemiologic study data was tracked weekly for six 
months on COVID-19 caseloads, hospitalizations, deaths, 
social isolation practices and sales of CQ/HCQ in the 
state of Santa Catarina. Sales of CQ/HCQ were significant 
predictors of all outcomes while social isolation indices 
had no bearing. Some have suggested that lower caseloads 
and mortality rates in Africa are related to widespread HCQ 
use for malarial prophylaxis. These correlations suggest 
that CQ/HCQ affect transmissibility of SARS-CoV-2 which 
is more than can be said for the mRNA vaccines [318].

In the early 17th century Jesuit missionaries, while traveling 
in the Andean forest region, observed that natives used a 
substance to control shivering during cold temperatures. 
The bark of the ‘fever tree,’ when dried and made into a 
powder, was also highly effective in ameliorating fevers. 
In following centuries 'cinchona' became widely used 
throughout Europe as the first effective anti-malarial 
agent, reducing fevers, as a tonic for gastrointestinal 
ailments, soothing muscle cramps, and calming nerves.

In the 1890s English physician Joseph Payne reported 
the benefits of quinine in patients with systemic lupus 
erythematosus (SLE). During World War II incidental 
beneficial effects with skin rashes and joint pain were 
observed in soldiers placed on anti-malarial prophylaxis. 
Later studies confirmed the efficacy of these compounds 
in SLE and rheumatoid arthritis. General effects include 
anti-inflammatory, anti-infective, immunomodulatory, 
anti-thrombotic as well as metabolic. But how such 
widespread effects are mediated remains unclear.

CQ/HCQ are beneficial in autoimmune conditions like 
Sjögren's syndrome, the iron-related disorder porphyria 
cutanea tarda, and the curious entity known as polymorphic 

light eruptions. In addition, they are effective in a variety 
of bacterial, viral and parasitic infections, and have shown 
efficacy as adjuvants in various cancers. The broad range 
of applications suggests effects are mediated not solely by 
turning on or off specific molecular pathways but rather 
as a non-specific amplifier of cellular metabolism and 
cellular digestive functions. Downstream effects are seen 
in the blood, arterial wall, interstitial fluid space, and the 
intracellular compartment [319-321].

In 1984 blood glucose-lowering effects of CQ/HCQ 
were discovered in type II diabetics. These agents 
improve insulin resistance implicating a shift in glucose 
metabolism at the cellular level [322-324]. They improve 
lipid profiles by decreasing serum triglyceride and 
cholesterol levels which are also likely related to metabolic 
alterations at the cellular level [325-327]. Treatment with 
HCQ is protective against thrombosis in SLE patients with 
anti-phospholipid autoantibodies [328-332]. But how to 
understand such a broad range of effects?

The term 'dielectric' was coined in the mid-19th century 
by physicists to designate a set of properties observed in 
relation to externally applied electrical currents. While 
substances like copper or silver conduct electricity, and 
insulators like glass, oils or rubber repel it, dielectric 
substances, instead, undergo internal polarization, 
i.e., separation of positive and negative charges, which 
amounts to creation of an internal field, i.e., the dielectric 
field. Cells are tiny dielectric capacitors.

When a strong electrical potential is applied to ferrous 
objects like iron their nuclei resonate, realign internally, 
and expel intra-atomic magnetism giving rise to an 
external magnetic field. The same dynamics are at play 
in the cardiovascular system when a magnetic field is 
generated in the blood to produce the outward diastolic 
motion of the heart and arterial walls.

With dielectricity, on the other hand, force lines are 
directed inwardly and radially as seen during contraction 
of the ventricles. The dielectric, the primary energy field, 
lies at the aether boundary, i.e., the inertial plane, and, 
when activated, produces torque thereby inducing energy 
flow. In reality, magnetism arises from the dielectric 
and the two always coexist in a single conjoined and 
inseparable field.

Dielectric materials possess high polarizability, expressed 
numerically as the dielectric constant, an indicator of 
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energy storing ability or capacitance. But capacitance 
doesn't simply indicate passive energy storage. In 
capacitance the dielectric field draws conductors into 
tighter spatial apposition thus increasing the counter 
spatial torque and activating aether flux. In living bodies 
the dielectric force originates in water, which has one 
of the highest dielectric constants, i.e., polarizability, of 
all substances indicating its ability to generate energy 
through the conjoined magneto-dielectric field and 
aether.

The intracellular dielectric field can be conceived as 
possessing two opposing poles, the cathode, the source 
of magnetic-dominant aerobic energy which maintains 
the surrounding fluid space in the alkaline pH range, 
and the anode through which energy is drawn out and 
around which the cell water is energy depleted and acidic. 
Inflammation, the result of mitochondrial dysfunction 
and deficient energy flux, employs less efficient acid-
producing pathways and, as such, represents a shift toward 
the anodic pole and loss of intracellular capacitance. This 
is where the aminoquinolines come into play.

CQ/HCQ actively accumulate in cells and many researchers 
believe their effects are mediated intracellularly. In both 
immune and non-immune cells, the primary effect of CQ/
HCQ is to shift cytoplasmic pH into the alkaline range, in 
other words, from the anode towards the cathodic pole of 
the dielectric field. Alkalinization causes mitochondrial 
metabolism to shift from catabolic to anabolic processes 
thereby inducing protein synthesis, repair of membranes, 
and stabilization of DNA [333]. Such effects impair entry 
of viral pathogens into the cell as well as inhibiting their 
replication. It goes without saying that these effects are 
energy-dependent.

Researchers claim CQ/HCQ induce alkalinization by 
their accumulation in cells but this doesn't make sense. 
These compounds are weak bases but the magnitude of 
the effect is much greater than can be explained by their 
physical presence alone. They more likely act on the basis 
of field effects by enhancing dielectric capacitance in 
cells thereby inducing aether flux and flow of negatively-
charged ion currents.

CQ/HCQ decrease pro-inflammatory cytokine release 
by macrophages while at the same time promoting 
phagocytosis; they block pro-inflammatory T-cell 
proliferation and shift immune cell balance toward 
anti-inflammatory subsets. This is directly related to 

alterations in WBC metabolism toward a more efficient 
energy-generating mode [334-343].

During the pandemic we employed HCQ in two ways. Due 
to its accumulation in cells HCQ has an extremely long 
half-life, by most estimations in the 3-4 week range. 
In older individuals and in those with comorbidities we 
used 200-400 mg per week for prophylaxis, about the 
same as for malaria prevention. During active infection 
we increased the amount to 200-400 mg/day over 5-7 
days. In both cases, evidence suggests that HCQ boosts 
intracellular energy flow thereby enhancing resistance 
and producing less severe infections while still allowing 
for development of natural immunity. We had no side 
effects with such low doses. At a cost of about $0.25 per 
tablet it is mind-boggling why this simple and effective 
strategy was not employed in all high-risk individuals 
during the pandemic.

Catching the Light

Having recognized all inflammatory disorders including 
COVID-19 as primary energy deficiency states, we 
examine a third strategy to boost energy flow and enhance 
resistance: modulation of radiant light energy and vitamin 
D. Radiant light, the third primary energy form, functions 
as an intermediary between the blood-borne magnetic 
field generated by the heart and the cell-based dielectric 
field. Radiant light interacts with water in the subdermal 
fluid space to generate current flows that, through the 
vitamin D-related system of enzymes and membrane 
receptors, amplify cell function. A flood of evidence has 
surfaced during the pandemic affirming the import of this 
alternate energy pathway.

Multiple studies link vitamin D deficiency (VDD) with 
severity of COVID-19 infection, hospitalization, length of 
stay, ICU admission, pulmonary complications, need for 
mechanical ventilation, and death [344-358]. In one study 
82% of COVID-19 cases had VDD compared with 47% of 
control subjects. Severely symptomatic COVID-19 patients 
have lower vitamin D levels than mildly-symptomatic or 
non-infected subjects. In another study, death rate in 
VDD patients was 46.5%, 29.5% in vitamin D insufficient 
subjects, and only 5.5% in those with normal vitamin D 
levels. Yet another study found that patients with vitamin 
D levels less than 30 ng/ml had a 25% mortality while 
those greater than 30 ng/ml were only 9%. There is solid 
science behind such clinical trends.
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Vitamin D is a surrogate for available light energy. Both 
autoimmune and infectious disorders tend to cluster in 
seasonal and geographic patterns related to the quantity 
and quality of ambient sunlight reaching the earth's 
surface. At the 45th parallels, for example, available light 
energy gradually decreases from about 12 hours per day 
near the autumnal and vernal equinoxes to about 9 hours 
at the winter solstice. During this period the quality of 
light is markedly attenuated due to the incident angle of 
solar rays.

The energy deficiency syndromes tend to express 
themselves more commonly at high latitudes or in 
winter and spring months after sustained periods of light 
deprivation. Chronological patterns have been reported 
in various autoimmune disorders, MS being the most 
well documented, as well as infectious diseases like 
tuberculosis [359-363]. Since the early 20th century there 
have been five pandemics including the recent COVID-19 
outbreak which have all shown similar temporal 
predispositions [364]. Neoplastic conditions like breast 
cancer also show seasonal behaviors that appear to 
influence survival patterns [365-367].

Studies affirm that blood vitamin D levels correlate with 
ambient light exposure and serve as a reliable proxy by 
which to gauge its effects. Many reports chronicle the 
relationship between VDD and the various autoimmune 
diseases [368-401]. At the north 45th parallel there is a 
null period between November and February during which 
sunlight is insufficient to trigger vitamin D synthesis. Such 
fluctuations roughly correlate with seasonal variations in 
disease incidence and activity [402-407].

A host of factors including ethnicity and cultural factors 
like mode of dress play into the picture. Dark-skinned 
peoples require up 6-fold greater sunlight exposure to 
get the same blood levels of vitamin D as light-skinned 
people. In the northern US dark-skinned people are 
predisposed year-round to VDD but especially in winter 
[408-412]. This must certainly play a permissive role in 
the worse outcomes seen in such individuals during the 
COVID-19 pandemic. Anything that affects transmission 
of radiant energy affects vitamin D synthesis, the so-
called sunshine hormone.

Through photosynthesis-like mechanisms, light rays 
induce formation of cholecalciferol which is subsequently 
transformed to 25(OH)D3 and, finally, to the highly-
active 1,25(OH)2D3 form. The latter energy-requiring step 

is affected by the cytochrome p450 enzyme system. The 
final product is said to be about 500-fold more biologically 
active than its precursor suggesting light-induced energy 
flow through vitamin D pathways. Vitamin D receptors at 
the cell membrane mediate the effects of highly-active 
vitamin D. Such receptors are present throughout the body 
including immune cells. Activated vitamin D influences 
at least 500 different gene activities through receptor-
mediated epigenetic mechanisms [413].

Given such biological potency one would expect vitamin 
D to be a panacea for COVID-19-related inflammation 
but clinical studies are inconsistent. A small number of 
studies showed no relation between vitamin D levels and 
outcomes in COVID-19 infection [414-418]. Others found 
no benefit with administration of vitamin D in hospitalized 
COVID-19 patients [419]. Why are effects so mixed? It 
would appear that the rate-limiting step lies not only in 
the synthesis of the vitamin D precursor but in its energy-
dependent conversion into the biologically potent form. 
Studies in individuals with autoimmune disease suggest 
that light plays the active role in conferral of benefits.

Norwegian subjects with psoriasis had significant clinical 
improvement in skin lesions after 16 days of sub-tropical 
sun exposure which was preceded by changes in immune 
function. Pro-inflammatory cytokine and T-cell levels 
in both skin and blood decreased and were replaced by 
resistant anti-inflammatory T-cell subsets [420, 421]. A 
Scottish study using narrowband ultraviolet phototherapy 
in subjects with various immune-mediated skin disorders 
found similar shifts in immune function along with 
increased vitamin D levels after 4 weeks of treatment 
[422]. Such effects occur on the basis of energy transfer 
between light and water which, in turn, provides energy 
equivalents for proteins and various enzyme systems to 
carry out their designated functions.

Studies indicate that water is sensitive to the effects of 
light. Researcher Gerald Pollack discovered that radiant 
light energy induces water to undergo spontaneous 
structural reorganization into two different forms, one, 
which he calls exclusion zone (EZ) water based upon its 
tendency to exclude particles, and the other, called bulk 
water, which forms adjacent to EZ water [423]. EZ water 
contains a surplus of negative charge and has higher pH 
and density. Bulk water, containing an excess of protons, 
is acidic with lower pH and specific gravity. The two 
different physical states of water, like the space between 
the cathode and anode, create a charge separation with 
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resultant current flow between them. Water is unique 
among substances in possessing both high dielectric 
capacitance as well as an ability to conduct alternating 
electrical currents.

By the same token it is recognized that all physiological 
functions in the body are affected by conformational 
changes in proteins (which represent states of 
polarization and depolarization). All proteins are 
surrounded by a mantle of water, called the hydration 
layer, which corresponds to Pollack's EZ water and tends 
to form around hydrophilic surfaces. Technologies such 
as NMR spectroscopy and x-ray crystallography affirm 
the primary role played by tissue water in protein-related 
dynamics [424-428]. The hydration shell appears to be 
instrumental in determining not only 3D protein structure 
but the folding process itself. Changes in water state 
have been recognized to be at play in a host of protein 
misfolding disorders [429-433]. It seems likely that 
light-induced charge separation in the interstitial water 
compartment provides energy to transform vitamin D 
into its active form.

Light-induced effects are mediated by the ubiquitous 
superfamily of enzymes known as the cytochrome 
p450 system which, evidence shows, is also activated 
by externally applied light pulses [434-437]. Skin 
keratinocytes, which are capable of effecting the whole 
vitamin D synthesis sequence, contain a-1-hydroxylase, 
the enzyme that transforms vitamin D into its highly 
potent form [438-441]. It appears this enzyme system 
plays a key role in protecting the lungs from COVID-19-
related complications as well.

The primary mode of entry of SARS-CoV-2 into the 
body is through the lungs. Multiple studies confirm VDD 
is associated with a higher incidence of upper airway 
infections secondary to rhinoviruses, respiratory syncytial 
virus as well as coronavirus. Epithelial cells throughout 
the lung and upper airway express high levels of a
-1-hydroxylase and continuously generate highly-active 
1,25(OH)2D3 which, through vitamin D receptors, turns on 
genes that release antimicrobial substances like defensins 
and cathelicidins as well as enhancing phagocytic activity 
[442-445].

Studies found VDD was associated with elevated cytokine 
storm markers like TNF-a , IL-1, IL-6, IL-10, and IL-21 
[446-450]. In one study the prevalence of VDD in severely 

ill COVID-19 patients was 97.8% compared with 32.9% 
in asymptomatic COVID-19-positive subjects. Mortality 
rate was higher (21%) in VDD subjects versus those 
with normal vitamin D levels (3.1%). Not surprisingly 
inflammatory markers such as IL-6 and TNF-awere 
elevated. Macrophages play a key role in the evolution of 
COVID-19 associated respiratory distress syndrome and 
possess vitamin D receptors [451-454]. Multiple articles 
thus recommend widescale vitamin D supplementation 
to modulate the inflammatory response in COVID-19 
infections [455-458].

We employed high-dose vitamin D, light treatments and 
HCQ prophylactically and in early COVID-19 infections 
in dozens of individuals without encountering a single 
serious COVID-19 infection or hospitalization. Academic 
pundits would argue our numbers were far too small to 
draw substantive conclusions but treatment on the basis 
of established principles trumps random (and flawed) 
experimentation as in the case of the mRNA vaccines.

License to Kill

In previous sections we established the efficacy of three 
cheap and widely available therapeutic approaches—
ozone PC, HCQ, and light/vitamin D—which, had they 
been implemented in either a preventive role or early in 
the course of COVID-19 infection, could have markedly 
improved outcomes and decreased morbidity and 
mortality. Evidence in support of their effectiveness had 
been in the medical literature years before the pandemic 
but was roundly ignored by the science community and 
policy makers at the public's expense.

We saw that when PC pulses are applied prior to a sub-
lethal period of ischemia release of energy into the 
blood by RBCs results in about 75% reduction in tissue 
damage. While this degree of protection would not be 
expected in the elderly or in those with comorbidities 
it nonetheless remains quite substantial. There were 
significant reductions in disease severity and death rate 
in subjects treated with HCQ alone or in combination 
with other agents. Mortality rates in hospitalized patients 
with VDD were at least 2-3X higher than in subjects with 
normal vitamin D levels. Based on such considerations 
we conclude that the three modalities in combination, 
either before or shortly after symptom onset, could have 
reduced pandemic-related morbidity and mortality by at 
least 80%.
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At the time of this writing, March 17, 2022, there had been 
462,758,117 total COVID-19 cases globally, 6,056,725 
deaths, with an overall mortality rate of 1.3% [459]. In 
the US there were 78,891,488 reported cases cumulatively 
with 960,194 deaths equating to a 1.2% mortality rate. It 
is generally accepted that 80-85% of confirmed cases are 
mild, 10-15% moderate, and about 5% severe. Clinical 
criteria are established for each of these categories [460-
465]. For convenience we will use 85%, 10%, and 5% to 
approximate this distribution. It goes without saying that 
most deaths are associated with severe cases.

Based on such figures the global burden of severe cases 
during the pandemic so far approximates 23 million with 
about 7.9 million in the US. Had ozone PC, HCQ, and light/
vitamin D treatment been implemented either preventively 
or at the time of symptom onset we estimate that about 4.8 
million deaths globally and 768,000 in the US could have 
been prevented. By the same token, had these modalities 
been utilized broadly on a populational scale instead of 
the failed vaccines there would have been a generalized 
downgrading of severity across the spectrum resulting in 
fewer morbid complications and hospitalizations. Given 
the superiority of natural immunity compared with the 
vaccines, this would have been a far safer and quicker path 
to herd immunity than that afforded by vaccines.

To date during the pandemic around 879,000 individuals 
in the US have required hospitalization with average 
length of stay about 5-6 days; complicated cases involving 
ICU admission can extend for weeks [466]. According to 
one study, costs for uncomplicated admissions averaged 
about $50,000 while complicated admissions were in the 
$200-300,000 range [467]. Hospitalization costs in the 
US alone will run into the tens of billions of dollars if not 
more. Despite improvements in survival rates during the 
pandemic ICU mortality remains in the 20-30% range 
[468-472]. Much of this carnage could have been averted 
had COVID-19 been treated properly.

In what will likely go down as the greatest public health 
disaster in medical history, Fauci and policy-makers 
failed to establish home-based therapeutic protocols. 
Instead, COVID-19-positive individuals were sent home 
to manage for themselves while continuing to spread the 
virus among close contacts. Many eventually developed 
severe symptoms requiring hospitalization. Treating an 
early, mild condition has a markedly greater likelihood 
of success than the far-advanced, energy-depleted state. 
'The strategy from the outset,' claims cardiologist Peter 

McCullough, 'should have been implementing protocols 
to stop hospitalizations through early treatment of 
Americans who tested positive for COVID but were still 
asymptomatic' [473].

Early in the pandemic McCullough reflected on the 
absurdity of doing nothing for a year or more while 
vaccines were still in the pipeline. Chinese physicians had 
already published an early treatment regimen in March, 
2020 resulting in a dramatic decrease in caseload by 
May, 2020 [474, 475]. Searching the medical literature 
McCullough compiled the first US COVID-19 protocol 
which was published in July, 2020 in the American Journal 
of Medicine [476, 477]. The regimen was administered 
to over 800 people in the Dallas area with a resultant 
85% decrease in hospitalization and mortality. 'We 
could have dramatically reduced COVID fatalities and 
hospitalizations,' McCullough argues, 'using early 
treatment protocols and repurposed drugs including 
ivermectin and hydroxychloroquine and many, many 
others.' He claims the COVID-19 pandemic in the US could 
have been ended as early as May, 2020 [478].

Pierre Kory, pulmonary medicine and critical care 
specialist St Luke's Medical Center, Milwaukee, and 
president of Front Line COVID-19 Critical Care Alliance 
agrees: 'the efficacy of some of these drugs as prophylaxis 
is almost miraculous'. Early intervention after exposure, 
he added, stops viral replication and prevents development 
of the cytokine storm and pulmonary complications. 'Dr. 
Fauci's suppression of early treatments,' Kory claimed, 
'will go down in history as having caused the death of a 
half a million Americans in the ICU' [479]. Our estimates 
suggest the numbers will be quite a bit larger. Like 
McCullough, Kory argues that early treatment could 
have stopped the pandemic in the spring of 2020. Fauci's 
deliberate and premeditated policies represent the highest 
form of malpractice.

Ryan Cole, clinical pathologist and medical director of Cole 
Diagnostics, the largest independent medical lab in Idaho, 
also became a strong proponent of early intervention after 
observing numerous striking turnarounds in COVID-19-
infected persons: 'Early treatment of COVID-19, plain 
and simple, saves lives'. He argues that if the medical 
community had been pro-active, the early multi-drug 
approach would have saved hundreds of thousands of 
lives in the US. 'Never in the history of medicine has 
early treatment . . . been so overtly neglected by the 
medical profession on such a massive scale'. In the case 
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of COVID-19, 'not to treat is to do harm'. And Cole adds: 
'The sacred doctor-patient relationship needs to be 
wrenched away from Anthony Fauci and the government/
pharmaceutical industrial complex . . . Doctors need to 
return to their oaths'. The pandemic has laid bare the 
irremediable flaws of a healthcare system that 'has lost 
its direction and soul' [480].

Medical internist Deborah Viglione is more blunt: 'The 
pandemic was not managed by real science but by 
political science'. Real science, she argues, showed that 
masks and lockdowns were useless. These measures 
were implemented, says Viglione, to manipulate the 
population through fear to submit to the vaccine agenda. 
After diagnosis patients were sent home to quarantine 
and return only if they couldn't breathe, 'but what kind 
of strategy is that?' The focus, she continued, should have 
been on early treatment to reduce viral loads, boost the 
immune response, and reduce oxidative stress.

Physicians who spoke out against Fauci's catastrophic 
policy, says Viglione, were labelled as spreading 
misinformation and threatened with revocation 
of licensure or board certification. Meanwhile, she 
continued, authorities attempted to suppress life-
saving medications by pressuring pharmacists not to fill 
prescriptions or insurance companies not to reimburse 
claims. This assertion has been echoed by numerous 
frontline physicians in the battle against COVID-19.

Viglione has treated over 500 patients from her office 
using ozone PC and a variety of other modalities 
including HCQ, quercetin, ivermectin, vitamins B, C, D, 
and zinc depending on severity of symptoms or existing 
comorbidities. 'The vast majority of our patients did 
extremely well with reduction of their symptoms and 
duration of illness. We had a high severity of illness. Most 
of our patients presented a week or more into their illness 
and were already in cytokine storm. They simply refused 
to go into the hospital. In spite of this we still had an 
extremely low death rate'. In fact, Viglione added, 'nurses 
in the local EDs were telling patients to come to us instead 
of staying there'. This is quite a different narrative from 
that which health care systems are trumpeting.

In his 2021 book The Real Anthony Fauci, Robert F. Kennedy 
Jr traces the web of distortion to Fauci, whose obsession 
with the mRNA vaccines and remdesivir led him to ignore 
and suppress other effective treatments. He engaged in 
'blatant and relentless manipulation of data to serve the 

vaccine agenda'. Fauci's policies, says Kennedy, 'were so 
grotesquely ill-conceived, so unfounded in science, so 
tethered to financial interests, that they caused hundreds 
of thousands of wholly unnecessary deaths'. Instead of 
adhering to science-based data Fauci relied on arbitrary 
dictates from the CDC and WHO while urging the public 
to 'trust the experts' even though the experts were often 
wrong. Throughout the pandemic there was a 'shockingly 
low quality of virtually all data pertinent to COVID-19' 
[481].

Instead of supporting the work of McCullough, Kory and 
others, federal agencies and public media began actively 
censoring information on effective remedies. 'Dr. Fauci 
refused to promote any of these interventions,' Kory 
claimed. 'It's not just that he made no effort to find 
effective off-the-shelf cures—he aggressively suppressed 
them'. McCullough agrees: 'It shocks the conscience 
that there is still no official protocol'. Anyone who tries 
to publish a protocol, he claims, 'will find themselves 
airtight blocked by the journals that are all under Fauci's 
control'. McCullough was fired from the staff of Baylor 
Medical Center. Cole's laboratory was dropped by one 
Idaho's largest healthcare networks [482]. Numerous 
other physicians paid a steep price for breaking line 
against Fauci's ruinous policy.

Not Ready for Prime Time

The human cost in terms of morbidity and mortality also 
includes adverse effects related to the mRNA vaccines. To 
date there have been approximately 1,183,493 COVID-19 
vaccine-related adverse event reports, including 25,641 
deaths, reported to VAERS since the beginning of the 
pandemic. As we discussed in part II of the paper VAERS 
data is difficult to quantify the true magnitude due to 
under-reporting however when we compared available 
data to the number of administered vaccines, we found an 
adverse event rate about 40-fold higher compared with 
2010 influenza vaccine event rates.

To date about 10,783,650,787 COVID-19 vaccine doses had 
been administered globally and 537,567,013 vaccine doses 
in the US with US representing 4.98% of total vaccines 
administered or a 20:1 ratio [483]. If we apply this ratio to 
the VAERS data we estimate the number of adverse events 
globally to be 23.67 million with about 512,820 deaths over 
about a 15-month period. The total number of influenza-
related vaccine deaths reported in VAERS over the past 30 
years was only 9,357.

https://www.thegms.co/publichealth/pubheal-rw-22042302-references.pdf


COVID-19 and the Unraveling of Experimental Medicine - Part III

Thorp KE, Thorp JA, Thorp EM. COVID-19 and the Unraveling of Experimental Medicine - Part III. G Med Sci. 2022; 3(1):118-158. 
https://www.doi.org/10.46766/thegms.pubheal.22042302

130*Hyperlink to 1,366 references for COVID-19 vaccine associated complications:
https://www.thegms.co/publichealth/pubheal-rw-22042302-references.pdf

In part II of this series, we showed that when 2021 VAERS 
COVID-19 deaths were compared to that of 2010 influenza 
vaccines, there was a 40-fold higher risk with the mRNA 
vaccines. When odds ratios were calculated from COVID-19 
vaccine deaths relative to other vaccine-related deaths in 
2021 we obtained even more striking inequalities: 354-

fold higher than meningococcal vaccine; 200-fold higher 
than varicella vaccine; 157-fold higher than influenza 
vaccines; 120-fold greater than that of the Tdap/DTaP 
vaccines; 86-fold higher than the MMR vaccines and; 23-
fold greater than the hepatitis B vaccine as depicted in 
Figure 1. Such disparities are mind-boggling.

Figure 1. Odds ratios for COVID-19 vaccine deaths compared to that of six other vaccines and the year 2021. 
Odds ratios and 95% confidence intervals are depicted. All odds ratios are statistically significant (P<0.0001).
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COVID-19 Vaccine Published Complications 
Subject of Article(s)

Number of Publication(s) Reference Numbers in the Hyperlink

Anaphylaxis 47 1 - 47

Antiphospholipid Antibodies 3 48 - 50

Arterial & Venous Thromboembolism 160 51 - 210

Arthritis 2 211 - 212

Auto-Immune Disorders 21 213 - 233

Autopsy Findings 11 234 - 244

Blood Disorders 10 245 - 254

Cancer 7 255 - 261

Cardiac Disease (Myocarditis / Pericarditis) 336 262 - 597

Cardiac Disease (other) 15 598 - 612

Dementia / Alzheimer’s / Delirium 2 613 - 614

Encephalopathy & Neurological Injury  46 615 - 660

Eye Diseases 11 661 - 671

Facial Nerve Palsy  28 672 – 699

Gastroparesis 1 700

Guillain Barre Syndrome 51 701 – 751

Hearing Loss / Tinnitus 13 752 – 764

Hemolytic Uremic Syndrome 1 765

Hemorrhage 38 766 – 803

Hepatitis 19 804 – 822

Immune and DNA Impacts 7 823 - 829

Kidney / Urinary Disorders 23 830 - 852

Lung Disease 3 853 - 855

Lymphadenopathy 60 856 - 915

Multiple Sclerosis 1 916

Muscle Disorders 5 917 - 921

Prion Disease 1 922 

Radiation Recall Syndrome 5 923 - 927

Rhabdomyolysis   12 928 - 939

Seizure Disorder 6 940 - 945

Shoulder / Musculoskeletal / Bursitis 7 946 - 952

Skin Reactions 41 953 - 993

Thyroid Disease 33 994 - 1026

Vaccine-Induced Thrombotic Thrombocytopenia 209 1027 - 1235

Varicella Zoster (Shingles) / Herpes 27 1236 - 1262

Vasculitis 48 1263 - 1310

Miscellaneous 56 1311 – 1366

TOTAL 1366 1 - 1366

Appendix 1. Subject-wise segregation of 1,366 references

We recently compared peer-reviewed medical journal publication of adverse events (AE’s) for COVID-19 vaccines since rollout 

(only 16 months) to that of six other vaccines ranging from 436 – 784 months (Appendix 1).

Appendix 1. All 1,366 references for COVID-19 vaccine associated complications are listed by subject matter. All 1,366 references are 

hyperlinked here and are all published in peer-reviewed medical journals from the onset of the COVID-19 vaccinations on December 

15, 2020 to March 15, 2022 (16 months) [495].
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When odds ratios for published AE’s were calculated (COVID-19 vaccine vs six other vaccines) there were again stunning inequalities. 

COVID-19 vaccinations had a 23,682-fold greater number of peer-reviewed publications of AE’s than that of meningococcal vaccine; 

12,721-fold higher than varicella vaccine; 1,712-fold higher than influenza vaccine; 6,190-fold greater than that of the Tdap/DTaP 

vaccines; 6,559-fold greater than MMR vaccines; and, 5,154-fold greater than Hepatitis B vaccine as depicted (Figure 2). Such 

irregularities are troubling given that COVID-19 vaccine AE’s are less likely to be reported due the healthcare system and social media 

influences.

Figure 2. Odds ratios for COVID-19 vaccine published adverse events (AE’s) compared to that of other vaccines. The 
duration of time was only 16 months for the COVID-19 vaccine while that of the other vaccines ranged from 436 to 784 
months. The duration of time was not controlled in this graph. All odds ratios are statistically significant (P<0.0001).
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Add to these irregularities that swirled around the 
clinical trials and rollout of the mRNA vaccines and one's 
skepticism of this science-based initiative is further 
piqued. In October 2020 the FDA urged Pfizer and Moderna 
to use a clinical trial design that would preserve the 
integrity of data collection. To this end Fauci endorsed a 
blinded crossover study to enable ongoing assessment of 
efficacy and safety. The companies argued the crossover 
design was 'onerous' and overly complicated and that it 
would be unethical to withhold the vaccines from study 
participants. Both companies granted individuals access 
to their study data [484, 485].

Why did the FDA permit this breach of protocol? Diana 
Zuckerman, president of the National Center for Health 
Research, argues that the FDA could have demanded 
that the companies adhere to the guidelines to receive 
approval. Failure to implement the recommended study 
design resulted in loss of valuable data. She was also 
concerned about inadequate numbers of elderly subjects 
in the trial which, she claimed, makes it impossible to 
determine how effective the vaccine is for frail, elderly 
subjects.

Consumer representative Sheldon Toubman, lawyer 
and member of the FDA advisory panel, cited a paucity 
of evidence as to whether the vaccine is effective in 
preventing severe COVID-19 infections. And based on 
other vaccine trials, he raised concerns as to whether 
the six-week follow-up period was sufficient to reliably 
assess the safety of these novel and untested preparations. 
Such flaws in the planning and design of the vaccine trials, 
beyond constituting a beach of established experimental 
protocol, raise ethical concerns.

If the planning stage of the vaccine trials was shaky then 
the clinical phase should have raised even more eyebrows. 
As we describe in part II, a shocking whistleblower exposé 
in BMJ in November, 2021 alleged improprieties involving 
Pfizer vaccine trials including not only unblinding of 
subjects but falsification of data, using inadequately 
trained personnel, and unacceptable delays in follow-up 
of adverse event reports [486].

Data obtained through a Freedom of Information Act 
(FOIA) indicate AE’s far exceeded original estimates. 
The Pfizer data of patients vaccinated from December 
15, 2020 to February 28, 2021 had 1,223 deaths noted. A 
total of 274 pregnant women received the vaccine and 75 
(27.4%) suffered ‘serious’ AE's while another 49 (17.9%) 

had “non-serious” AE’s (page 12 on Pfizer document) 
[487, 488]. See these published court-ordered documents 
entitled ‘5.3.6 post marketing experience’ on Public 
Health and Medical Professionals for Transparency 
website, phmpt.org. In late April 2021 this data was sent 
to both the FDA and CDC which, nonetheless, continued 
to issue glowing safety reports. This leads us to question 
the propriety, if not legality, of conferring Emergency Use 
Authorization (EUA) to the vaccine manufacturers.

Under federal law new medicines and vaccines do not 
qualify for EUA if there are existing FDA-approved 
substances that are also effective against the disease: 
'there must be no adequate, approved and available 
alternatives to the candidate product for diagnosing, 
preventing, or treating the disease or condition . . .' Before 
the pandemic, as we have seen, there was abundant 
evidence in the research literature supporting the efficacy 
of modalities like ozone PC, HCQ, and vitamin D and others 
for the treatment of inflammatory conditions. Add to this 
the self-serving agenda of the vaccine manufacturers in 
both setting up the trials and carrying them out and one 
begins to suspect a trail of collusion leading back to the 
very powers that issued the EUA. This brings to mind the 
age-old quandary quis custodiet ipsos custodes: who guards 
the guards?

And beyond granting EUA under potentially fraudulent 
circumstances one is confronted by lapses in oversight. 
By the time the Delta variant surfaced in the summer of 
2021 and spread across the globe there was ample data to 
suggest primary vaccine failure. We cited multiple studies 
showing a high percentage of Delta-variant infections in 
previously vaccinated persons. By late July the CDC was 
aware of these trends and formulated a policy to downplay 
the magnitude of breakthrough infections and focus on 
the role of the unvaccinated population in the Delta surge 
[489].

By mid-August the Whitehouse Coronavirus Task Force 
had reams of data from across the US and the world 
showing no relationship between emergent Delta spread 
patterns and vaccination rates [490]. And yet President 
Biden continued for the rest of 2021 and into 2022 
to promote vaccination and booster jabs while at the 
same time publicly wearing a mask as if upholding an 
established, time-honored principle. Even presidents 
bow down to science. The gap between spin and reality 
has never been more obvious.
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Why were the COVID-19 vaccines approved and 
recommended by the FDA and CDC when there were 
so many unanswered questions regarding safety and 
propriety? Why did the American Board of Medical 
Specialties (ABMS), the American Board of Obstetrics & 
Gynecology (ABOG) and the Federation of State Medical 
Boards (FSMB) threaten all physicians in the United 
States with loss of licensures and board certifications if 
“COVID-19 misinformation” was spread? [488]. ABOG, 
ABMS and FSMB documents show that “COVID-19 
misinformation” is used as a euphemism purposed to 
gaslight and eliminate vaccine hesitancy [488]. As of this 
publication ABOG is still pushing the vaccine in pregnant 
women and women of reproductive age despite the grave 
concerns expressed.

Why wasn't the mRNA vaccine experiment terminated 
in the summer of 2021? And, as if in defiance of this 
lapse, the very same trends repeated themselves in the 
autumn with the Omicron variant. Why wasn't the vaccine 
program stopped in late fall? Certainly, the evidence 
was compelling. And by January 1, 2022, daily COVID-19 
caseloads across the globe were over double as compared 
to January 1, 2021 as the vaccines were being rolled out. 
And yet governments and healthcare systems continued to 
hawk the mRNA vaccines while blaming the unvaccinated 
for soaring hospitalization costs [491].

Why wasn't there more public and scientific debate 
about spiraling caseloads in late 2021 and early 2022 or 
the escalating number of adverse event reports? Why 
were the 1,366 peer-reviewed publications of AE’s over 
16 months since the vaccine rollout summarily ignored? 
[495]. And why were early treatment protocols never 
established? Instead the number of infections along with 
their attendant morbidity and mortality continued to 
surge throughout the winter of 2021-22. If one seeks to 
make a case for failure of oversight look no further.

As the saying goes, 'denial ain't just a river in Egypt'. No 
matter how the academic science community attempts 
to twist the narrative to its own ends, the fact remains 
that herd immunity can and will be reached only through 
the unvaccinated and breakthrough infections in the 
vaccinated. The mRna vaccines weren't the free ticket 
into the Promised Land as scientists claimed. And in their 
wake, they left a wide swath of devastation.

Science in Crisis

The problems we cite concerning suppression of early 
treatment protocols and corruption of vaccine trials is not 
peculiar to the US. Multiple instances of such aberrations 
came to light in the UK: internal documents withheld from 
the public, officials ordered not to discuss certain matters, 
publication of fraudulent research; other research 
smothered or censored. In a November 2020 editorial in 
BMJ entitled 'COVID-19: politicization, 'corruption,' and 
suppression of science,' executive editor and physician 
Kamran Abbasi argues that science was manipulated for 
political and financial gain [492].

During the COVID-19 pandemic era the concept of 
evidence-based medicine has become an anachronism 
and the more pertinent concern now is 'who's evidence?' 
and 'to what end?' In the US, Operation Warp Speed was 
used to justify hasty shoddily-designed vaccine trials 
while suppressing widely available alternative medicines. 
At the same time the culture was inundated by a flood of 
misinformation and disinformation by those who held 
the reins of power. The pandemic unleashed scales of 
opportunism by politicians, industry, academic scientists 
and healthcare systems while, at the same time, revealing 
just how easily the common perception of reality can be 
purposefully distorted during times of crisis.

'Politicization of science,' writes Abbasi, 'was 
enthusiastically deployed by some of history’s worst 
autocrats and dictators, and it is now regrettably 
commonplace in democracies. The medical-political 
complex tends towards suppression of science to 
aggrandize and enrich those in power. And, as the 
powerful become more successful, richer, and further 
intoxicated with power, the inconvenient truths of science 
are suppressed. When good science is suppressed, people 
die'. This precise tactic was employed by the CDC, FDA, 
ABMS, ABOG and FSMB. This echoes the timeless axiom 
'power corrupts; absolute power corrupts absolutely.'

In a March 2022 Opinion piece published in the BMJ, Jon 
Jureidini and Leemon McHenry, authors of The Illusion of 
Evidence-Based Medicine: Exposing the Crisis of Credibility 
in Clinical Research (2020), up the ante and argue that 
evidence based medicine has been thoroughly corrupted 
by corporate interests, lack of oversight, and rife with 
special interest among influential academic scientists 
[493].
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Evidence based medicine seeks to provide a solid fact-
based foundation for the practice of medicine. Its 
effectiveness depends on reliable data gathered from 
well-conducted clinical trials but how can this occur when 
the trials are controlled by the industry itself? Cui bono? 
The whistleblower article and data obtained through 
the FOIA request reveal the degree to which industry 
sponsored trials were manipulated and how vulnerable 
the evidence-based process truly is. 'Until this problem is 
corrected,' write Jureidini and McHenry, 'evidence-based 
medicine will remain an illusion.'

The scientific ideal of impartiality and strict adherence 
to evidence, i.e., objectivity, allows perpetuation 
of a legitimate fact-based science; absent this and 
science becomes little more than a polyglot jumble of 
unsubstantiated claims. Never in recent centuries has 
the gap between science and religion been so razor-thin. 
The scientific ideal is threatened by corporations in which 
financial interests prevail over objectivity. 'Patients die', 
Jureidini and McHenry argue, 'because of the adverse 
impact of commercial interests on the research agenda, 
universities, and regulators'.

Corporations are not accountable to the public but to 
shareholders. Fierce corporate tribalism, brand loyalty 
and public perception inevitably triumph over scientific 
truth. Universities have become pawns of corporations 
which exercise undue influence over research agendas, 
journal content and medical education. In recent decades 
the corporate culture has insinuated itself throughout all 
layers of the university.

Academic deans have been replaced by profit-driven 
'managers' who cultivate affiliations with the industrial 
sector to enhance revenues. Based on their affiliations 
with prestigious universities, published academics are 
actively courted by corporate 'sponsors' to influence 
practice patterns and enhance brand identity. Such 'key 
opinion leaders' become paid members of corporate 
advisory boards and 'product champions' at medical 
conferences and continuing medical education programs. 
And, in the process, they compromise their impartial 
point-of-view while continuing to reap all the benefits as 
university faculty members.

This dynamic, wholly pervasive during the pandemic, 
created an uneven playing field: corporations and 
universities enacted their one-sided vaccine agenda 
while critics faced consequences ranging from rejection 

of intellectual work by journals, ostracization in their 
professional community, legal threats, and loss of 
licensure, accreditation or ability to earn a livelihood. 
For this reason, we have increasingly come to regard the 
medical-industrial complex as little more than a cartel. 
We define a cartel as a group of independent producers 
who band together to control the production, distribution, 
and pricing of a commonly shared commodity.

Peter McCullough confronted this organized wall of 
resistance when attempting to establish early treatment 
protocols for COVID-19 infected individuals. The 
universities that rely on hundreds of millions of dollars 
in annual funding from Fauci and the NIH were unmoved: 
'We didn't have a single academic institution come up 
with a single protocol', he claims. 'They didn't even try. 
Harvard, Johns Hopkins, Duke, you name it. Not a single 
medical center set up even a tent to try to treat patients 
and prevent hospitalization and death. There wasn't 
one ounce of original research coming out of America to 
fight COVID—other than the vaccines' [494]. Is this at all 
surprising?

Finally, we harken back to the very raison d'etre of 
experimental science which, ostensibly, is to cultivate 
understanding and insight. Experiments are performed to 
establish the factuality of phenomena and to aid in making 
critical discriminations; at some point, however, facts 
must be incorporated into an overarching intellectual 
framework, i.e., a causal theory. It is at this juncture that 
molecular and cellular scientists have completely missed 
the boat. The pandemic has laid bare the limitations of 
the experimental method not to mention the failure of 
academic scientists to integrate valid facts into a coherent 
theoretical framework.

The pandemic revealed grave flaws in current immune 
theory which, as we showed in part I, can be traced back to 
the turn of the 20th century, over 120 years ago, involving 
questions that were never resolved by academics despite 
the fact that the correct interpretation had been advanced 
in the 1880s. This hardly instills confidence in either 
science or the experimental method. In the majority of 
instances one can draw the same conclusions by careful 
observation. The experimental method has been used as a 
shibboleth by academics to control public opinion and the 
arbitrary knowledge content of their science. One might 
argue that it has far outlived its purpose and intent.

In part III we encountered the PC phenomenon, now 
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regarded as the most powerful innate form of protection 
in living bodies, discovered accidentally in 1986 by 
molecular biologists, which has been the focus of tens of 
thousands of experiments over the past 35 years and yet, 
remains a complete enigma. Molecular science is long on 
description and detail but woefully short on explanation. 
In earlier publications we showed that the PC phenomenon 
is generated by a blood-borne energy field. To date no one 
has refuted our claim.

In part I we showed on the basis of credible experimental 
evidence that all pathophysiologic phenomena associated 
with COVID-19 infection are referable to diffuse endothelial 
inflammation and, in turn, that such inflammation is 
secondary to diastolic dysfunction and deficient energy 
generation in the vascular system. The primacy of the 
diastolic phase of the cardiac cycle has been recognized 
by medical science since the mid-1980s and, like the PC 
phenomenon, has been the subject of innumerable clinical 
studies. And yet, to our knowledge, not a single academic 
publication has pointed out the inescapable link between 
diastolic function and energy generation. Apparently, 
academics believe they can cherry-pick evidence that 
suits their own purposes.

Had timely adjudications been made on these critical 
issues by the academic community it would have been 
readily apparent to all that early treatment protocols 
advanced by McCullough, Kory, Cole, Viglione, and 
numerous others were not only fitting and proper but, in 
fact, the most important therapeutic approach to COVID-19 
infection. Had this path been taken many, many deaths 
would have been prevented. The conclusion is unavoidable 
that the self-serving academic community played a major 
role in the pandemic tragedy.

Such developments not only sing the swan song of 
molecular and cellular medicine but point to the failure 
of academics to perform their designated function, i.e., to 
maintain a vibrant and evolving science. If the academics 
can't keep their own house in order who will step in to 
fill the void? The pandemic has shown quite clearly that 
intelligent and motivated physicians are fully capable of 
making necessary clinical adjudications and choosing 
effective treatments and, in fact, do not need the kind of 
patronistic babysitting afforded by the academic cartel. 
East is East, West is West, and never the twain shall 
meet. There must be a parting of ways between the two, 
a reconciliation through separation so to speak, that 

will permit the emergence and evolution of a vital new 
integrated and functionally based system of medicine. We 
develop this theme further in future articles.
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