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ABSTRACT

Although early studies showed that saturated fat diets with very low levels of PUFAs increase serum cholesterol, whereas other studies showed

high serum cholesterol increased the risk of coronary artery disease (CAD), the evidence of dietary saturated fats increasing CAD or causing

premature death was weak. Over the years, data revealed that dietary saturated fatty acids (SFAs) are not associated with CAD and other adverse

health effects or at worst are weakly associated in some analyses when other contributing factors may be overlooked. Several recent analyses

indicate that SFAs, particularly in dairy products and coconut oil, can improve health. The evidence of v6 polyunsaturated fatty acids (PUFAs)

promoting inflammation and augmenting many diseases continues to grow, whereas v3 PUFAs seem to counter these adverse effects. The

replacement of saturated fats in the diet with carbohydrates, especially sugars, has resulted in increased obesity and its associated health

complications. Well-established mechanisms have been proposed for the adverse health effects of some alternative or replacement nutrients,

such as simple carbohydrates and PUFAs. The focus on dietary manipulation of serum cholesterol may be moot in view of numerous other

factors that increase the risk of heart disease. The adverse health effects that have been associated with saturated fats in the past are most likely

due to factors other than SFAs, which are discussed here. This review calls for a rational reevaluation of existing dietary recommendations that

focus on minimizing dietary SFAs, for which mechanisms for adverse health effects are lacking. Adv. Nutr. 4: 294–302, 2013.

Introduction
Since the Framingham Heart Study reported that high se-
rum cholesterol was a major risk factor for coronary heart
disease (1), there has been an aggressive campaign in the
medical community to decrease serum cholesterol. It has
been a widely accepted belief that dietary saturated fats
and dietary cholesterol cause an increase in serum total cho-
lesterol, as well as LDL-cholesterol (LDL-C)2 and thereby in-
crease the risk of heart disease if consumed (2). Over the
years, it became clear that high levels of LDL circulating in
the blood are susceptible to lipid peroxidation, which results
in the oxidized LDL being scavenged by macrophages lining
certain arteries, particularly around the heart, leading to ath-
erosclerosis (3). Although this mechanism provides a role
for high serum LDL-C causing atherosclerosis, evidence of
the involvement of saturated fats is lacking, even though it
is well established that a diet high in saturated fat increases

serum cholesterol and a diet high in polyunsaturated oil de-
creases serum cholesterol (4,5). In fact, PUFAs are the com-
ponents that are oxidized and generate antigenic substances
that are recognized by immune cells for clearance of oxi-
dized LDL in atherogenesis (6–8).

Numerous reports and reviews in recent years have begun
to call the perceived pernicious effects of dietary saturated
fatty acids (SFAs) into question. The purpose of this review
is to summarize the scientific understanding as it relates to
dietary fats in health and disease, particularly with regard
to the innocuous nature of SFAs and the physiological effects
that have implicated PUFAs in numerous disorders and
diseases. The role of dietary fats in cardiovascular disease
(CVD) and many other diseases is complex, yet there is a
powerful inertia that has allowed the saturated fat doctrine
to endure.

Dietary fatty acids and serum cholesterol
Dietary fat studies in the mid-20th century stressed the rela-
tionship of dietary SFAs and PUFAs to serum cholesterol
levels with an aim toward decreasing the likelihood of the
development of coronary artery disease (CAD) and prema-
ture death (4,5). Once lipoprotein fractions were separated
in the blood, it became evident that LDL and VLDL were
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the carriers of cholesterol that were most closely associated
with risk of heart disease (9). Later it was found that the ra-
tio of total serum cholesterol to HDL-C was a better indica-
tor of heart disease risk (10). By the 1990s, the mechanisms
by which dietary fats and specific types of fatty acids were
regulating serum cholesterol and lipoproteins were begin-
ning to be revealed.

A family of proteins known as sterol regulatory element
binding proteins (SREBPs) were discovered in the early 1990s.
These proteins move to the nucleus in cholesterol-depleted
cells to alter transcription of several genes involved in lipid
metabolism (11). When intracellular cholesterol levels are
low, SREBP-1 promotes expression of genes for synthesis
of cholesterol and LDL receptors that remove cholesterol
from the circulation. When intracellular cholesterol levels
are high, SREBP-1 is not activated by protease cleavage,
and the genes for cholesterol production and LDL receptors
are downregulated. SREBP-1 also activates promoters for
genes involved in fatty acid synthesis and lipid storage
(12). PUFAs, particularly docosahexaenoic acid and others
to a lesser extent, regulate expression of the SREBP genes
(13,14). Consequently, when PUFAs are present, there is
less expression of SREBPs and enzymes for cholesterol syn-
thesis, and the serum cholesterol pool decreases.

There appears to be a number of proteins that bind PUFAs
and are involved in regulating gene expression, including a
family of G protein–coupled receptors (15), as well as perox-
isome proliferator–activated receptors-a and -g, retinoid
X receptors, and various other nuclear receptors (16). The
liver uses a variety of these receptors or sensors for PUFAs to
regulate storage and utilization versus oxidation of PUFAs
(17). In this way, PUFAs can stimulate fatty acid oxidation
in the liver to minimize their potential for free radical oxida-
tion in the body when their levels are high in the diet. One
must keep in mind that this complex array for regulation
of expression of a wide range of genes is also subject to an even
more complex array of responses to dietary PUFAs and other
dietary factors.

Single nucleotide polymorphisms in genes for many of
the above factors, as well as in genes for several apolipopro-
teins, TNFs, glutathione peroxidases, and other proteins
result in a wide range of individual responses to dietary con-
stituents. The consequences of such genetic variation can be
either little change or very large changes in serum lipids and
lipoproteins in response to diet, depending on an individ-
ual’s genetic makeup (18). However, one should not lose
sight of the fact that levels of many other proteins are being
altered in the process, which can give rise to a wide array of
physiological responses that influence susceptibility to many
unhealthy conditions, such as CVD and cancer.

Short-chain SFAs, such as those in dairy fat and coconut
oil, can also influence gene expression via interactions with
various G protein–coupled receptors that are linked to sev-
eral hormonal responses, including insulin and leptin, that
regulate overall energy metabolism in the body (19). It is
clear that there are numerous sensors that respond to dietary
PUFAs and short- or medium-chain SFAs (20).

Genetic factors
Brown and Goldstein (21) received the Nobel Prize in Phys-
iology or Medicine in 1985 for their work on genetic defects
in LDL receptors of people with familial hypercholesterole-
mia (FH). They identified several mutations that produce
nonfunctional LDL receptors, resulting in death from ather-
osclerosis and heart disease at an early age. Individuals with
FH have serum LDL-C in excess of 300 mg/dL (or 8 mmol/L),
although LDL-C may be as high as 650 mg/dL (17 mmol/L)
in homozygous individuals. Goldstein and Brown (22) also
identified several genes that code for other proteins involved
in cholesterol transport and metabolism, such as apolipo-
protein B-100 (apo B), which is a component of LDL that
binds to LDL receptors. There are other proteins involved
in LDL synthesis, transport, and clearance that can result
in a genetic predisposition to increased serum LDL choles-
terol and FH (23–25).

In the early 1990s, it was discovered that men with CVD
tended to have smaller HDL particles than healthy controls
(26). It was later found that LDL particle size was also signif-
icantly smaller in men with CAD than in case-matched con-
trols (27), although another study showed the ratio of total
serum cholesterol to HDL-C was a better predictor of CAD
risk than LDL particle size (28). A prospective, population-
based cohort study also found an increased risk of CAD in
middle-aged men with smaller, dense LDL particles than
in men with larger LDL particles, although the relationship
did not show a linear dependence on particle size (29). It
later became evident that LDL particle size was influenced
by several factors and was not necessarily a useful predictor
of heart disease risk; the nature of LDL is influenced by both
dietary and genetic factors (30).

Lipoprotein (a) [Lp(a)] is a complex lipoprotein that has
several properties in common with LDL. Like LDL and
VLDL, Lp(a) contains apo B, but also contains highly varia-
ble forms of apolipoprotein(a) that strongly influence its
atherogenicity and propensity to promote heart disease (31).
The wide array of apolipoprotein(a) isoforms present in
the human population may have caused some confusion re-
garding the role of Lp(a) in atherogenesis and CVD. The
association of apo B with oxidized phospholipids was found
to be dependent on Lp(a) (32). The presence of oxidized
phospholipids and Lp(a) tend to be proinflammatory and
promote atherogenesis.

Small, dense LDL particles rarely occur as an isolated
condition, but are often associated with a specific phenotype
that is characterized by hypertriglyceridemia, low HDL-C,
abdominal obesity, insulin resistance, and other metabolic
irregularities that lead to endothelial dysfunction and sus-
ceptibility to thrombosis (33). Small, dense LDL is also more
susceptible to lipid peroxidation due to changes in the lipid
composition, making it more atherogenic (34). LDL parti-
cles from the atherogenic phenotype contain less cholesterol
and phospholipid, but more triglyceride. This phenotype
is generally referred to as phenotype B and is characterized
by elevated levels of apo B, which is found in LDL and
VLDL (35).
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There have been a host of proteins linked to lipoprotein
metabolism and transport and a wide range of genetic vari-
ations identified that result in alterations of those proteins.
Many are associated with HDL and larger HDL particle
size, which is consistently associated with a decreased risk
of CAD (36). HDL is important in reverse-cholesterol trans-
port, bringing cholesterol from arterial deposits to the liver
for processing, where it is converted to useful metabolites
and eventually cleared from the body via bile secretions. A
family of lipoprotein lipases, including hepatic lipase and
endothelial lipase, are intimately involved in HDL metabo-
lism. Endothelial lipase is upregulated during inflammation,
a condition that increases LDL oxidation and atherogenesis
(37). Genetic variation in apolipoprotein A-I, a major pro-
tein component of HDL, can result in larger but less stable
HDL particles and decreased levels of circulating HDL
(38). Cholesteryl ester transfer protein is generally consid-
ered to be protective, although this protein may transfer
lipids fromHDL to other lipoproteins that result in a less de-
sirable serum lipid profile (39). HDL is emerging as a fasci-
nating lipoprotein with a complex array of functions that
involve both protein and lipid components. HDL has been
found to influence immune function, vascular inflamma-
tion, glucose metabolism, and platelet function as well as
other physiological phenomena unrelated to CVD (40).

Paraoxonase 1 (PON1) is another protein associated with
HDL that exhibits esterase and lactonase enzyme activity, in-
cluding metabolism of toxic organophosphorus pesticides
and oxidized lipids in oxidized LDL particles. The levels of
PON1 activity varies tremendously among humans, which
depends to a large degree on genetic variation. However,
environmental factors, such as dietary antioxidant con-
sumption, alcohol consumption, and certain drugs can also
influence PON1 activity (41). Dietary olive oil can increase
levels of serum PON1 in some individuals, which is genotype
dependent (42), whereas MUFAs and PUFAs can inhibit
PON1 enzymatic activity (43). SFAs (palmitic and myristic)
had virtually no effect on PON1 enzymatic activity. A recent
study found that HDL isolated from patients with CAD lacks
endothelial anti-inflammatory properties, has lower PON1
enzyme activity, and does not promote endothelial nitric oxide
production (44), all of which are most likely tied to genetic
rather than dietary factors.

Fatty acids involved in atherogenesis and CVD
Linoleic acid makes LDL more susceptible to lipid peroxida-
tion and subsequent deposition of the oxidized LDL in mac-
rophages lining the arteries (45). Several lipid peroxidation
products have been shown to trigger transformation of cir-
culating monocytes to macrophages that line the arteries
and ultimately become foam cells (46,47). Lipid peroxida-
tion products also signal cells in the arterial intima to encap-
sulate foam cells by surrounding them with extracellular
matrix proteins and eventually calcify the matrix (48). It
would stand to reason that a greater abundance of PUFAs,
relative to SFAs and MUFAs, during conditions of oxidative
stress would provoke atherogenesis. The fibrous cap that is

formed over fatty deposits makes them inaccessible to apo-
lipoproteins such as apolipoprotein A-I or E, which are
components of HDL, the lipoprotein that removes choles-
terol from these deposits (49). The protein cap is character-
istic of advanced atherosclerotic plaque and erosion of this
protective cap by extracellular metalloproteases can release
collagen and collagen-like fragments that trigger blood
platelets to initiate a blood clot, which results in myocardial
infarction or stroke (3).

Because saturated fats are not susceptible to lipid perox-
idation, they have not been found to be involved in these
mechanisms. This begs the question of how dietary polyun-
saturated oils seem to lower the risk of CAD, even though
many studies have shown no such effect. One important
consideration is that foods that are considered sources
of predominantly saturated fats, such as meats, are often
cooked at high temperatures, which can induce lipid perox-
idation in the minor amounts of PUFAs present in those
animal products (50–52). Oxidative stress and lipid peroxi-
dation products are known to promote heart disease, cancer,
and several other chronic diseases (53,54). High-temperature
cooking can also oxidize carbohydrates, producing a range
of toxic oxidation products that promote oxidative stress,
type 2 diabetes, and CVD (55). The preparation and cooking
methods used for foods that are traditionally classified
as saturated fat foods may be producing substances from
PUFAs and carbohydrates in those foods that are promoting
disease.

Human food preferences tend to favor foods with both
fats and sugar (56), which complicates any attempts to cor-
relate saturated fats with disease. Sugars readily undergo ox-
idation, with fructose generally getting oxidized many times
faster than glucose, whereas sucrose is relatively resistant to
oxidation (57). The oxidation products of these monosac-
charides include glyoxal, methylglyoxal, and formaldehyde.
Methylglyoxal has been shown to promote endothelial dys-
function as well as hypercholesterolemia in rats (58). Meth-
ylglyoxal is also associated with increased atherosclerosis and
hypertension in humans (59). Formaldehyde and methylgly-
oxal have been implicated in endothelial injury, oxidative
stress, and angiopathy (60).

Many clinical studies show that there are fewer coronary
events when polyunsaturated oils replace saturated fats in
the diet (61). However, a recent meta-analysis found that
interventions using mixed v3 and v6 PUFAs resulted in a
significant (22%) decrease in CAD events compared with
control diets with fewer PUFAs. However, interventions
that used v6 polyunsaturated oils with no v3 PUFAs
showed w16% more cardiovascular events compared with
the control diets, although the increased number was not
statistically significant (62). It would seem that even moder-
ate amounts of v3 PUFAs in the diet result in attenuation of
inflammatory responses that are reflected in the significant
reduction in coronary events observed with increasing die-
tary PUFAs. Of the common vegetable oils, soy oil contains
w7% v3 PUFAs and canola oil as much as 10% v3 PUFAs,
whereas corn, safflower, and sunflower oils generally contain
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<1% v3 PUFAs (63). Another systematic review found in-
sufficient evidence to support an association (positive or
negative) between CAD and several dietary factors, includ-
ing SFAs or PUFAs, a-linolenic acid, total fat, meat, eggs,
and milk (64).

Lipid peroxidation and inflammation
Lipid peroxidation is invoked as a mechanism for numerous
adverse health effects, such as aging, cancer, atherosclerosis,
and tissue necrosis. The greater in vivo susceptibility of
v6 PUFAs relative to the v3 PUFAs, has placed the spotlight
on these fatty acids as contributing to or exacerbating
many ailments (68). The metabolism of arachidonic acid
to bioactive eicosanoids is responsible for many of the bio-
logical processes that lead to inflammation. Indeed, steroidal
and nonsteroidal anti-inflammatory drugs suppress inflam-
mation by blocking the release of arachidonic acid from
membranes or its subsequent metabolism to eicosanoids.

Studies of inflammation in rats have found that dietary
manipulation of relative amounts of v6 PUFA precursors
can have profound effects on the degree of inflammation.
Predominantly SFAs in the diet result in far less inflamma-
tion than diets with either v3 (69) or v6 PUFAs (70). Sev-
eral studies have shown that dietary supplementation with
v3 PUFAs can reduce inflammation and make patients
less dependent on drug therapy to manage the pain and stiff-
ness of arthritis (71–73). Patients should be advised to
minimize their intake of v6 oils when attempting v3
supplementation as a therapeutic approach to reduce the
inflammation of arthritis and other inflammatory syndromes
(74,75). Small amounts of v3 supplements in a sea of dietary
v6 oils would have relatively little chance of changing the
course of an inflammatory response. Because dietary sat-
urated fats do not promote inflammation, it may be wiser
to minimize v6 PUFAs and consume more SFAs to reduce
various types of inflammation; most sources of MUFAs con-
tain significant amounts of PUFAs as well. There have been
few scientific studies along these lines because of the mis-
guided concern that saturated fats, even those from vegetable
sources such as palm and coconut oil, would be detrimental
to one’s health.

The efficacy of v3 supplements for inflammatory syn-
dromes other than rheumatoid arthritis are less persuasive,
although study designs are questioned regarding whether
patients are advised to reduce their v6 fatty acid intake
(76). Fish oil supplements improved pulmonary function
in some asthmatics (responders) but not in others (nonre-
sponders). A relatively high ratio (10:1) of dietary v6 to
v3 PUFAs resulted in diminished respiratory function in
methacholine-provoked asthmatics, whereas a lower ratio
(2:1) produced significant improvement in >40% of the
study participants (77). A study in Japan showed beneficial
effects of v3 supplements in asthmatic children in a con-
trolled hospital ward environment (78). A comparison of di-
etary saturated fats with polyunsaturated oils was not found
in the literature for asthma studies. Such an approach would
be logical for this life-threatening condition, in view of the

benign nature of saturated fats and the fact that carbohy-
drates, especially sugars, may actually be augmenting the in-
cidence of asthma (79).

Are low-fat, low-saturated fat diets healthier?
Studies with laboratory animals have shown that high-fat
diets promote chemically induced cancers (80,81). A study
of chemically induced mammary tumors in rats found
that v6 PUFAs promoted tumor proliferation, whereas sat-
urated fats or v3 PUFAs did not promote tumors as much
or even suppressed tumors, depending on what one uses
as a reference (82,83). Although 1 review and meta-analysis
found that linoleic acid, the predominant v6 fatty acid in
vegetable oils, is not a risk factor for breast, colorectal, and
prostate cancers in humans (84), there is evidence to the
contrary that high intake of v6 relative to v3 PUFAs in-
creases cancer risks (85–87). There are multiple processes
by which v6 fatty acids can promote carcinogenesis; pro-
duction of bioactive eicosanoids from arachidonic acid is 1
mechanism (88,89). Nonsteroidal anti-inflammatory drugs
as well as cyclooxygenase-2 inhibitors can suppress tumors
by inhibiting production of prostaglandins, particularly
those of the v6 variety (90). Lipid peroxides are also known
to promote chemically induced tumors (91), and PUFAs are
highly susceptible to lipid peroxidation.

Investigators often seem to have a particular bias against
saturated fats. One report showed that red meat alone was
not significantly associated with colorectal cancer, although
there was some increase in colorectal cancers with higher red
meat intake [HR = 1.17 for highest vs. lowest intakes (95%
CI = 0.92–1.49, P-trend = 0.08)]. Processed meats were signif-
icantly associated [HR = 1.42 (95% CI = 1.09–1.86, P-trend =
0.02)]. The authors then combined the data for red meat
and processed meat to give a significant association and con-
cluded that red and processed meat are positively associated
with colorectal cancer (92). When specific types of meat
were analyzed, significant risk was associated with pork
[HR = 1.18 (95% CI = 0.95–1.48, P-trend = 0.02)] and
lamb [HR = 1.22 (95% CI = 0.96–1.55, P-trend = 0.03)],
but not with beef/or veal [HR = 1.03 (95% CI = 0.86–
1.24, P-trend = 0.76)]. It is interesting to note that in 1 study,
beef had a much lower ratio of PUFAs to SFAs than pork,
but nearly the same ratio of PUFAs to SFAs as sheep (93).
The ratio of MUFAs to SFAs in beef also varies, as it does
in most meats, with the ratio ranging from w0.8 to 1.8, de-
pending on breed and feeding practices (94).

Nitrite used in the preservation of many processed meats
is known to form a carcinogen with secondary amines under
acidic conditions that would prevail in the stomach (95).
Others have found no association of red meat and only a
very weak association of processed meat with breast cancer
(96) and prostate cancer (97). Most studies find no differ-
ences in cancer risk with different types of fat, but do find
associations with high levels of fat in the diet (81).

A recent meta-analysis (98) reviewed 20 studies with >1
million subjects and found that red meat was not associated with
CAD events [RR = 1.00 (95% CI = 0.81–1.23, P-trend = 0.36)].
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In contrast, processed meats were associated with increased
incidence of CAD [RR = 1.42 (95% CI = 1.07–1.89, P-trend =
0.04)]. This indicates that saturated fat per se is not increas-
ing CAD events, but other factors are, such as preservatives
used in processed meats or other dietary substances that are
being consumed in conjunction with processed meats. It is
important to keep in mind that meats generally contain as
much MUFA as SFA. Others are beginning to challenge
the saturated fat hypothesis with closer analyses of past stud-
ies (99–103).

Campaigns were waged against tropical oils (palm and
coconut oils) in the early 1980s because of their high levels
of SFAs, even though palm oil contains about as muchMUFAs
acids as SFAs and has an ample amount of PUFAs to keep
serum cholesterol low. In fact, 2 studies showed that the higher
ratio of SFAs to MUFAs in palm oil (1.1:1) compared with
olive oil (0.22:1) had no effect on serum lipids in healthy
volunteers (104,105). Palm oil and olive oil have similar
amounts (w10%) of PUFAs. SFAs in coconut oil increase
serum HDL-C more than LDL-C to give a more favorable
lipid profile relative to dietary carbohydrates (10). Claims
that tropical oils with a high SFA content increase the risk
of CAD lack clear scientific evidence to that effect. Indeed,
countries with high intake of tropical oils have some of the
lowest rates of heart disease in the world (106).

Many of the shorter chain fatty acids found in milk fat
and coconut oil have beneficial health effects. The shorter
chain SFA in milk (C4–C12) are not only metabolized rap-
idly for energy in infants, but have been found to have im-
portant antiviral, antimicrobial, antitumor, and immune
response functions (107). Lauric acid, which is present in
milk and the most abundant fatty acid in coconut oil, is ef-
fective in preventing tooth decay and plaque buildup (108).
Diets rich in coconut oils have also been shown to lower
other risk factors for CAD, such as tissue plasminogen acti-
vator antigen and Lp(a) (109). The medium-chain SFAs in
coconut oil and butterfat (milk) increase total serum choles-
terol, but their positive effects on HDL-C are protective in
many ways. There is also evidence that proteins, fats, and
calcium in milk are beneficial in lowering blood pressure,
inflammation, and the risk of type 2 diabetes (110,111). In-
deed, these constituents of milk have clear beneficial effects
against metabolic syndrome, which is a major factor in pro-
moting heart disease, as well as premature death from a va-
riety of causes (112).

There has been a spate of recent publications in the bio-
medical literature that question the negative perception that
dairy fats are bad for health. One meta-analysis showed that
participants in prospective studies with the highest con-
sumption of dairy products had a lower RR for all-cause
mortality as well as for CAD, stroke, and diabetes compared
with the lowest intake of dairy products (113). Many of the
studies included in the analysis started before low-fat milk
was available on the market. Another review arrived at the
same conclusion that consumption of dairy products is
not associated with higher risk of CVD (100). Although pro-
spective cohort studies often find a significant reduction in

the incidence of CAD with a larger ratio of PUFAs to SFAs
in the diet (114), there are often many other factors related
to overall health that correlate with the unsaturated to SFA
ratio, such as exercise, a healthier lifestyle, and more fiber
and less sugar in the diet.

Less fat generally means more carbohydrate
It should not be surprising that substitution of carbohy-
drates (starches) for saturated fats in the diet has relatively
little effect on serum lipids. Excess carbohydrates are con-
verted to fats for efficient energy storage, and the human
body synthesizes primarily SFAs from excess carbohydrates,
although MUFAs are also formed. Consequently, from a
physiological viewpoint, there is no reason to believe that re-
placing fat in the diet with carbohydrate at a constant caloric
intake will improve the serum lipid profile significantly. In-
deed, a low-fat, high-carbohydrate diet causes an increase in
serum triglycerides and small, dense LDL particles (115),
which are more strongly associated with CAD than serum
total cholesterol or LDL-C. When dietary fat is replaced by
carbohydrate without changing the fatty acid composition
of the fat, there is no change in LDL-C or HDL-C, but there
is an increase in serum triglycerides (116). However, if there
is a higher percentage of PUFAs and lower SFAs in a low-fat
diet, serum total cholesterol and LDL-C will decrease (117).

Young children who consumed more fruit juice than their
peers were shorter in stature and had greater BMI than their
peers who drank less fruit juice (118). A trend of increased
fruit juice consumption by infants and children in recent
years has coincided with a decrease in milk consumption
(119). The rates of childhood obesity have skyrocketed since
the introduction of low-fat milk, although high fructose
corn syrup (HFCS) became omnipresent in foods at the
same time and is more strongly associated with obesity
than dietary fat (120,121). As stated previously, the short-
chain SFAs in milk provide valuable antibacterial and antivi-
ral activities, which would result in healthier children. The
short-chain SFAs found in milk act as signaling agents in
the immune system (122). Infections in children also corre-
lated with higher levels of atherogenic oxidized LDL, as well
as lower levels of HDL (123). It is possible that oxidized LDL
and low HDL impart increased susceptibility to infection, al-
though the combination of infections and an adverse serum
lipid profile may both result from an undesirable diet, i.e.,
more sugar and fewer healthy fats.

Food processors generally add large amounts of sugar to
fat-free or low-fat foods to make them more palatable to
consumers. Fructose is 1 dietary constituent that is consis-
tently found to have adverse health consequences, and the
larger the proportion of fructose is in the diet, the more for-
midable the effect. The adverse effects of fructose that have
been documented include increased serum triglycerides,
particularly in men (124,125); increased serum uric acid,
which is associated with gout and hypertension (126); in-
creased lipid peroxidation (57) and increased oxidation of
LDL (127); increased oxidative stress in animal models (128);
greater risk of the development of metabolic syndrome,
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including obesity, insulin resistance, hypertension, and CVD
risk (129,130); increased nonalcoholic fatty liver disease
(131); and increased systemic inflammation and associated
renal disease (132).

There are clearly many established physiological mecha-
nisms by which fructose increases CVD and several other
diseases. Whether the source of dietary fructose is sucrose
or HFCS would seem irrelevant, although sucrose is 50%
fructose, whereas the most common dietary source of
HFCS (soft drinks) is generally 55% fructose and w43%
glucose. Solutions of fructose are also highly susceptible to
autoxidation, producing a host of toxic products (57),
whereas sucrose is highly resistant to oxidation. The toxic
products from fructose oxidation include formaldehyde
and a-dicarbonyls. Although saturated fats have been impli-
cated in many of the adverse health effects attributed to fruc-
tose, there is no scientific evidence to support a role for
saturated fats in the physiological mechanisms. On the other
hand, plausible mechanisms are proposed for all of the un-
healthy conditions promoted by high fructose intake men-
tioned earlier.

It turns out that a high level of fructose in the diet in-
creases plasma triglycerides, which leads to not only in-
creased levels of VLDL and small, dense LDL particles, but
increased levels of oxidized LDL, insulin resistance, and
other metabolic consequences linked to metabolic syndrome
and dyslipidemia (133). The mechanisms by which fructose
promotes inflammation and elevated levels of uric acid and
several cytokines have been reviewed (132).

Conclusions
Saturated fats are benign with regard to inflammatory ef-
fects, as are the MUFAs. The meager effect that saturated
fats have on serum cholesterol levels when modest but ade-
quate amounts of polyunsaturated oils are included in the
diet, and the lack of any clear evidence that saturated fats
are promoting any of the conditions that can be attributed
to PUFA makes one wonder how saturated fats got such a
bad reputation in the health literature. The influence of di-
etary fats on serum cholesterol has been overstated, and a
physiological mechanism for saturated fats causing heart
disease is still missing.

Various aldehydes produced in the oxidation of PUFAs,
as well as sugars, are known to initiate or augment several
diseases, such as cancer, inflammation, asthma, type 2 dia-
betes, atherosclerosis, and endothelial dysfunction. Satu-
rated fats per se may not be responsible for many of the
adverse health effects with which they have been associated;
instead, oxidation of PUFAs in those foods may be the
cause of any associations that have been found. Conse-
quently, the dietary recommendations to restrict saturated
fats in the diet should be revised to reflect differences in
handling before consumption, e.g., dairy fats are generally
not heated to high temperatures. It is time to reevaluate the
dietary recommendations that focus on lowering serum
cholesterol and to use a more holistic approach to dietary
policy.
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