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Abstract—The Internet of Bodies (IoB) is an imminent exten-
sion to the vast Internet of things domain, where interconnected
devices (e.g., worn, implanted, embedded, swallowed, etc.) located
in-on-and-around the human body form a network. Thus, the
IoB can enable a myriad of services and applications for a wide
range of sectors, including medicine, safety, security, wellness,
entertainment, to name but a few. Especially considering the
recent health and economic crisis caused by novel coronavirus
pandemic, a.k.a. COVID-19, the IoB can revolutionize today’s
public health and safety infrastructure. Nonetheless, reaping the
full benefit of IoB is still subject to addressing related risks,
concerns, and challenges. Hence, this survey first outlines the
IoB requirements and related communication and networking
standards. Considering the lossy and heterogeneous dielectric
properties of the human body, one of the major technical
challenges is characterizing the behavior of the communication
links in-on-and-around the human body. Therefore, this paper
presents a systematic survey of channel modeling issues for
various link types of human body communication (HBC) channels
below 100 MHz, the narrowband (NB) channels between 400
MHz and 2.5 GHz, and ultra-wideband (UWB) channels from
3 to 10 GHz. After explaining bio-electromagnetics attributes of
the human body, physical and numerical body phantoms are
presented along with electromagnetic propagation tool models.
Then, the first-order and the second-order channel statistics for
NB and UWB channels are covered with a special emphasis
on body posture, mobility, and antenna effects. For capacitively,
galvanically, and magnetically coupled HBC channels, four dif-
ferent channel modeling methods (i.e., analytical, numerical,
circuit, and empirical) are investigated, and electrode effects
are discussed. Lastly, interested readers are provided with open
research challenges and potential future research directions.

Index Terms—Internet of things, body area networks, phan-
toms, narrowband, ultra-wideband, capacitive, galvanic, body
channel, intra-body communications, channel modeling.

I. INTRODUCTION

THE Internet of things (IoT) is a technological revolu-
tion that integrates the physical and digital worlds by

interconnecting uniquely identifiable smart objects [1]. The
IoT targets at ubiquitous connectivity among anyone/anything
at any place/time for any service over any network. The
recent report of international data corporation forecasts that
an estimated 22 billion IoT devices in 2018 are foreseen to
reach 41.6 billion in 2025, generating 79.4 zettabytes of data1.
These numbers and ambitious goals naturally propel IoT as a
mega-trend in next-generation communication and information
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1https://www.idc.com/getdoc.jsp?containerId=prUS45213219

technologies (ICT). As enabler of such a holistic approach
towards digitizing and connecting a plethora of devices, all
legacy telecommunications and networking technologies have
come under the umbrella of IoT. Therefore, the IoT era dictates
a radical paradigm shift in our perception of almost all ver-
ticals, including business, industry, energy, media, education,
public health and safety, transportation, and logistics. The IoT
can be classified into ‘Internet of X-Things’ where X may stand
for space [2], underground [3], underwater [4], industrial [5],
wearable [6], defense and public safety [7], medical [8], and
so on. In this survey, we narrow the scope to the body-centric
IoT, which will be referred to as ‘Internet of Bodies’ (IoB)
throughout the text.

A. A Taxonomy of IoB Devices

The IoB is an imminent extension to the vast IoT domain,
where connected devices located in-on-and-around the human
body form a network to enable a myriad of applications.
Although an early version of IoB was first conceptualized in
the realm of wireless body area networks (WBANs) [9], their
wide-spread use in today’s daily life has become possible as
a result of parallel advancements in microelectronics, wireless
communications, and signal processing. The IoB devices can
be worn, swallowed, implanted in the body, or even embedded
into the skin. Smartwatches, fitness tracker rings/wrist-bands,
wireless headphones, heads-up display glasses, virtual reality
headsets, smart tattoos/bio-patches, and global positioning
system (GPS) enabled shoes are examples of wearable IoB
devices. Digital drug delivery pills and ingestible sensors (e.g.,
endoscopy capsules) are typical examples of swallowable IoB
devices. For implantable IoB, cardioverter defibrillators and
heart pacemakers are a case in point. Lastly, embedded IoB
devices can be simply chips buried under the skin, such
as injecting a large rice grain size microchip into the hand
for the purpose of biometric identification and authorization
grant. All such variety of IoB node types will facilitate a
network infrastructure in-on-and-around the human body and
eventually pave the way for cutting-edge neurotechnology
applications, such as brain-computer interface, cognitive as-
sessment & enhancement, neuroinformatic, and neurofeedback
[10].

B. A Taxonomy of IoB Applications

As pictorially categorized in Fig. 1, IoB devices located
in-on-and-around the human body enable many services for a
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wide range of sectors, each with various applications and func-
tions. Among all these sectors, public health-care and safety
require specific attention as world population growth poses
three major challenges [11]: the demographic peak of baby
boomers, the aging population as a result of the increasing
life expectancy, and boosting health care expenditures. 2019
base estimates of the Organization for Economic Co-operation
and Development (OECD) foresee health spending of member
countries to reach 10.2% of Gross Domestic Product (GDP) by
2030, the highest 21.3% for the USA, up from 8.8% in 2015
[12]. These statistics mandate a dramatic shift towards a more
scalable and affordable health-care system. More importantly,
millions of people die from diabetes, obesity, cancer, cardio-
vascular diseases, asthma, and many more fatal or chronic
diseases every single year. The majority of the current fatal
diseases share one critical feature in common: most of the
patients have the disease diagnosed a long while after they
experience the early symptoms. Research has shown that early
diagnosis and screening can control or even prevent most
chronic diseases. Therefore, IoB can support future health-care
systems for early detection and prevention of diseases through
proactive wellness screening technologies. By enabling close
and continuous monitoring, IoB can also be an effective tool
for the rehabilitation of patients recovering after surgery or
medication.

Indeed, all the statistics presented in the previous paragraph
have to be reconsidered in the post-COVID-19 world. The
COVID-19 is a respiratory virus that originated from the
city of Wuhan, China, in December 2019. In March 2020,
the World Health Organization (WHO) declared COVID-19
as a global pandemic. The WHO situation reports record
almost 25 million infections and nearly a million deaths by
September 1, 2020 [13]. In this regard, IoB can be of great
help in fighting pandemic diseases by detecting new cases
based on physiological data and vital signs, remote monitoring
of positive but asymptomatic patients in self-quarantine, and
tracing other potential cases in contact with cases previously
identified as positive. IoB based health monitoring is also a
good solution to minimize the infection risk for health-care
providers whose dedicated-selfless-and-relentless efforts have
been proven priceless on the front-line against COVID-19.

C. IoB Risks, Concerns, and Challenges

Albeit, with all these fantastic opportunities, several risks,
concerns, and challenges must still be addressed to realize
the full potential of IoB. Security risks and privacy concerns
are the major obstacles hindering the wide-spread use of IoB
devices. This is especially crucial for IoB devices that have
control over vital body functions (e.g. heart pace-makers)or
gather sensitive data of users. Although laws and regulations
exist regarding personal health information held by medical
providers and insurance companies, these outdated regulations
do not address technology companies that store and process
sensitive information in their data centers. Focusing only
on the "deemed" sensitivity of certain data items, does not
necessarily address the ability to use non-sensitive data to infer
sensitive information by means of data analytics.

Fig. 1: A taxonomy of IoB Applications.

TABLE I: Related works

Surveys and Magazines on IoB Communications and Networking
Year Ref. Type Content & Style
2007 [14] Magazine Antennas & propagation for on-body WBAN
2009 [15] Magazine Principles and challenges of HBCs

2009 [16] Magazine A review of WBAN applications,
devices, and radio technologies

2011 [17] Survey A layer-by-layer survey of WBAN
2011 [9] Survey A layer-by-layer survey of WBAN
2012 [18] Survey A layer-by-layer survey of WBAN
2013 [19] Magazine Propagation models for in-body WBAN
2013 [20] Magazine Propagation models for on-body WBAN
2013 [21] Survey A survey on intrabody communications
2014 [22] Survey A layer-by-layer survey of WBAN
2014 [23] Survey A survey on technologies & design challenges
2017 [24] Survey A review on HBC
2018 [25] Survey A survey of galvanic coupling HBC

There are also technical challenges in terms of contradic-
tory design objectives such as safety, miniaturization, battery
life, and communication performance. For example, an im-
plant/embedded IoB device requires both a small form factor
and long battery life. On the other hand, safety regulations
limit the maximum transmission power to avoid harm to the
human body, which also behaves as a delimiter on communi-
cation performance. As a lossy and heterogeneous dielectric
medium, the communication channel’s characterization in-on-
and-around the human body is not only non-trivial but also
crucial to optimize overall communication performance. This
is mainly because of the fact that the cross-layer optimization
of the IoB network heavily depends on precise channel estima-
tion. Noting that subsequent sections go over IoB requirements
in detail, the focus of this survey will be on the channel
modeling and their interwoven relations with risks, concerns,
and challenges.

D. Survey Contributions and Organization
As tabulated in Table I, several magazine and survey papers

covered different aspects of wireless body area networks in the
last decade2. In [15] and [16], authors present a short review
of applications, devices, and challenges of wireless body area

2Table I is generated by searching several scientific databases (e.g., Web of
Science, IEEE Xplore, Scopus, Science Direct, etc.) using this paper’s index
terms as keywords. Out of the returned results, we narrowed our focus to
the last 15 years and selected papers based on their relevance, content and
widespread referencing as indicated by citations.
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Fig. 2: Schematic illustration of the survey organization.

networks (WBANs). It is followed by several survey papers
which handle WBANs in a layer-by-layer fashion [17], [9],
[18], [22], [23]. Since these works cover a wide range of
WBAN related issues, they do not provide readers with an
in-depth insights into the channel modeling issues. On the
other hand, the in-body channel characterization is reviewed in
[19], which is followed by on-body channel characterization
in [14] and [20]. The surveys on human body communication
is relatively more recent and can be found in [24] and [25].

In previous surveys, channel characteristics were either
briefly mentioned or considered for a specific type of chan-
nel (e.g., in-body or on-body). To the best of the authors’
knowledge, this survey is the first to provide a systematic
survey on modeling narrowband, ultra-wideband, and human
body communication channels in-on-and-around the human
body. We call it a systematic survey for two reasons: 1) It
systematically organizes channel models based on frequency
band, node locations, and combinations of various link types.
These are investigated from first and second-order channel
statistics perspectives, which are further classified based on
their impact scale, i.e., small or large. 2) The survey is not only
intended for presenting state-of-the-art channel modeling and

propagation characterization studies. Throughout the survey,
we discuss how the channel model accuracy is coupled with
IoB communication systems and networks’ design. We are
also the first to present the IoB concept as a holistic view
and system-level requirements and related standards. Fig. 2
presents the survey organization along with number of refer-
ences falls within each section and/or subsection. Fig. 2 also
shows a time-span of research topics to illustrate the phases
of propagation characterization and channel modeling studies
and the related standardization efforts.

II. IOB REQUIREMENTS AND RELATED STANDARDS

Standardizing the IoB communications and networking is a
challenging task due to the broad range of IoB applications
presented in Section I-B. The standardizations bring many
benefits including reduced research and development costs
thanks to the publicly available solid technical specifications
and guidelines; compatibility and interoperability between
products manufactured by different vendors; rapid and broad
spread of the technology. Therefore, this section first outlines
the main IoB requirements before delving into the various
entities’ standardization efforts.

A. IoB Requirements
In this subsection, we briefly summarize main IoB require-

ments in light of the application types discussed above.
1) Quality of Service (QoS): The QoS demands of IoB

applications can significantly deviate from each other in terms
of data rate, bit error rate (BER), latency, and reliability. The
data rate needs may range from Kbps (e.g, glucose monitoring:
< 1 Kbps, drug delivery: < 16 Kbps, EEG: 86.4 Kbps, voice:
50-100 Kbps, ECG: 192 Kbps) to Mbps (e.g., capsule en-
doscopy and audio streaming: 1 Mbps, EMG: 1.5 Mbps, video
streaming: 10-100 Mbps) [23]. While medical and military
applications have stringent BER demands (<10´10), multime-
dia applications are relatively more tolerable (<10´5). Since
medical and military applications generally fall within the
scope of ultra-reliable low-latency communications (URLLC)
class, IoB network architecture should be designed to provide
a diverse range of QoS demands by prioritizing traffic types
based on urgency and criticality of the underlying applications.

At this point, the coexistence of IoB nodes and other
wireless technologies has significant impacts on meeting the
QoS demands. Generic IoT devices are generally designed to
operate on license-free globally available ISM bands, which
are already overcrowded by other wireless standards, including
IEEE 802.11 (Wi-Fi) [26], IEEE 802.15.1 (WPAN) [27], IEEE
802.15.4 (ZigBee) [28], and Bluetooth [29]. The coexistence
of IoBs and these standards are addressed in [30]–[32]. Con-
sidering the ever-increasing IoT devices operating on ISM
bands, it is hardly possible to guarantee URLLC for critical
IoB applications. Therefore, the physical layer (PHY) should
employ appropriate interference avoidance and error correction
methods to improve BER performance. Moreover, the PHY
should also be supported by higher layers to improve packet
loss rate and transmission delays with effective collision and
congestion avoidance techniques.
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Fig. 3: Frequency bands defined by IEEE 802.15.6 Standard.

2) Safety Guidelines: In the context of wireless communi-
cations, the primary health concern is mainly heating of body
tissues since the energy of transmitted electromagnetic fields
is absorbed by the body. The degree of heating effects due
to the overexposure to electromagnetic fields depends on the
operating frequency, signal intensity, the duration of exposure,
the location of exposure on the human body, the distance
from the transmitter as well as other factors such as shielding.
General safety guidelines are specified by The International
Commission on Non-Ionizing Radiation Protection (ICNIRP)
to limit time-varying electromagnetic field exposure on the
human body [33]. For frequencies up to 10 GHz, these
restrictions are determined in terms of Specific Absorption
Rate (SAR), which is expressed in units of watts per kilogram
[W/Kg]. Thus, the SAR represents the mass normalized energy
rate coupled to biological tissues. Indeed, typical low power
wireless devices do not radiate enough power to be a concern
for whole-body SAR. However, since IoB devices are located
in or on the human body, extra attention must be paid on
localized SAR measured around the transceivers in/on the
human body. Therefore, IoB related standards must comply
with the minimum local SAR requirements of global (ICNRP
[33]) or regional regulation entities, e.g., Scientific Committee
on Emerging and Newly Identified Health Risks (SCENIHR)
for European Union [34] and Federal Commission on Com-
munications (FCC) for USA [35].

3) Power Efficiency: IoB nodes are specially designed as
ultra-low-power communication devices for two main reasons:
1) To comply with the safety regulations mentioned above
and 2) To maximize the network lifetime since IoB devices
are typically battery powered. In particular, implanted and
embedded IoB nodes require 5 years of battery lifetime as
they are typically placed in the human body through a surgery
process [36]. Likewise, wearable devices and on-body sensors
are also preferred to have a lifetime of weeks or months for the
sake of user satisfaction and maintenance easiness. A cross-
layer optimization is necessary for an energy efficient system
design, which is discussed in the subsequent sections of the
survey.

4) Form Factor: IoB nodes generally have stringent form
factor constraints that require squeezing antenna/electrode and
battery into a tiny case while meeting the QoS demands of
the application of interest. While miniaturization is crucial
for implantable devices, flexibility and stretchability are more
important comfort considerations for wearable devices [37].
Advances in stretchable electronics is a key technology to
realize flexible wearable devices; e.g., liquid and microfluidic
antennas, displays, solar cells, battery, sensors, etc. Ink-jet

printable textile electronics can also realize highly effective
small form-factor wearable devices [38]. Notice that an-
tenna/electrode design for on/in-body devices is quite distinct
due to the impacts of the human body on the radiation and
polarization characteristics, which is discussed in more detail
through Section IV-C and Section V-C.

5) Security, Confidentiality, and Privacy: Most IoB appli-
cations require a high level of security, confidentiality, and
privacy. However, this is a challenging task given the limited
resources of energy, memory, and computational power. First
of all, a trusted coordinator node is necessary for the manage-
ment of adding/dropping nodes to/from the network as well
as providing key distribution for encryption and decryption.
The coordinator and IoB nodes also need to authenticate that
data is received from a trusted pair, which can be done by
computing a message authentication code based on a shared
secret key. The integrity of data should also be protected
against the adversary nodes’ capabilities of altering original
data. Furthermore, the confidentiality of user data must be
carefully guarded against eavesdropping. Data integrity and
privacy are especially important if the underlying application is
sensitive to the age of information (e.g., data freshness). Since
ensuring all these functions inevitably degrades other QoS
metrics, the use of biometrics can help significantly reduce the
complexity and its associated costs [39], [40]. The biometrics
include heartbeat timing, fingerprint, voice, palm print and
veins, face/iris recognition, gait, typing rhythm, etc. Unlike the
license-free crowded RF bands, human body communications
(HBC) offers extra levels of physical layer security by using
the human body as a communication medium, which is also
discussed in the subsequent sections of the survey.

B. IoB-Related Communications and Networking Standards

In this subsection, we summarize the main features of IEEE
802.15.4, IEEE 802.15.6, and Bluetooth standards. Although
they are developed for WBANs, we believe they provide a
good starting point for standardization of the IoB networks.

1) IEEE 802.15.4 Standard: The IEEE 802.15.4 standard-
izes the PHY and MAC specifications to support low cost,
low power, low range, and low bit rate requirements of
wireless personal area networks (WPANs) [28]. The upper
layer operations of The IEEE 802.15.4 are defined by the
ZigBee protocol of ZigBee Alliance [41] and 6LowPAN of
the Internet engineering task force (IETF) [42]. The ZigBee
protocol suite is later extended to ZigBee Pro for non-routing
nodes with extra features of route aggregation, asymmetric
link handling, conflict resolution, etc.

The IEEE 802.15.4 specifies a total of 27 half-duplex
channels: a single channel with 20 Kbps rate at 868 MHz
band, ten channels each with 40 Kbps at 915 MHz band,
and sixteen channels each with 250 Kbps at 2.45 GHz band.
In the MAC layer, beacon-enabled and non-beacon-enabled
channel access modes are available. While the former em-
ploys the Carrier Sense Multiple Access/Collision Avoidance
(CSMA/CA) algorithm with back-off periods, the later uses
an unslotted CSMA/CA. Although an encryption algorithm
is defined to cipher the transmitted data, key management
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and authentication policies are not specified. However, ZigBee
manages these issues in the network and application layers by
using advanced encryption standard (AES) with 128-bit key
lengths.

2) IEEE 802.15.6 Standard: Unlike the IEEE 802.15.4
standard, the IEEE 802.15.6 standard is especially devel-
oped to meet the aforementioned distinctive QoS demands
of WBANs [43]. As illustrated in Fig. 3, the IEEE 802.15.6
standard defines three different PHYs to address the breadth
of WBAN applications:

a) HBC-PHY operates with a central frequency at 21 MHz
and a bandwidth of 5.25 MHz, which may support data
rates ranging from 164 Kbps to 1.3 Mbps.

b) NB-PHY requires NB-WBAN nodes to operate in at least
one of the following bands: medical implant communi-
cation service (MICS) band on 402-405 MHz; wireless
medical telemetry system (WMTS) bands on 420-450
MHz, 863-870 MHz, 950-958 MHz, and 1395-1429
MHz; medical body area network (MBAN) band on 2360-
2400 MHz; and industrial-scientific-and-medical (ISM)
bands on 902-908 MHz and 2400-2483.5 MHz. NB-PHY
allows several bit rates ranging from 50 Kbps to 1 Mbps
by using Bose–Chaudhuri–Hocquenghem (BCH) error
correction codes with basic modulation schemes. For
example, Gaussian minimum shift keying (GMSK), ⇡{2-
shifted differential binary phase-shift keying (DBPSK),
and ⇡{4-shifted differential quadrature phase-shift keying
(DQPSK).

c) UWB-PHY consists of low (3.25-4.75 GHz) and high
(6.60-10.25 GHz) bands, each of which is further divided
into 500 MHz sub-bands. The UWB technique is known
with its ability to support either low rates over highly
attenuated channels or high rates over short ranges. In ad-
dition to power-spectral density, its fine granularity time
resolution is suitable for real-time applications [44]. The
UWB-PHY provides high data rates (0.2–15 Mbps) by
using simple modulation schemes of impulse radio (IR-
UWB) and frequency modulation (FM-UWB) with non-
coherent detection or differentially coherent detection.

All PHY solutions share a single MAC protocol that has
three modes of operation; 1) beacon mode with beacon periods
(i.e., superframes), 2) non-Beacon mode with superframes, and
3) non-beacon mode without superframes. Superframes con-
sists of three phases; 1) exclusive access phase for transmission
of critical/emergency data, 2) random-access phase for nodes
using CSMA/CA, and 3) contention access phase for nodes
using slotted ALOHA access. The IEEE 802.15.6 also supports
three levels of security; Level-0) Unsecured communications,
Level-1) Authenticated but not encrypted communications,
and Level-2) Authenticated and encrypted communications for
confidentiality and privacy.

Other requirements of the IEEE 802.15.6 can be sum-
marized as follows: Transmission range upper-bound and
lower-bound are set as three meters for in-body and on-body
communications, respectively. For 95% of the best-performing
links, the packet error rate should be no more than 10% for
a 250 octet payload. Nodes should be able to join and leave
the network in less than 3 seconds. Less than 125 ms and

Fig. 4: A qualitative comparison of WBAN technologies.

250 ms latency should be provided for medical and non-
medical applications, respectively. The minimum (maximum)
transmission power must be no more (less) than -10 (0) dBm3.
Lastly, up to 10 nodes could co-exist in a 6 m

3 space.
3) Bluetooth Low Energy: Bluetooth is a whole protocol

stack with two modes of operation: basic rate (BR) and
low energy (LE) [29]. The BR is the classic Bluetooth that
can provide up to 3 Mbps with optional enhanced data rate
(EHR). LE is especially developed for low-power low-rate
cheap devices powered by button cell batteries. Bluetooth
operates on 2.45 GHz ISM band which is split into 2 MHz
wide 40 sub-bands. Bluetooth can provide up to 1 Mbps by
using Gaussian frequency shift keying (GFSK) modulation. It
also has two security modes; the former ensures data integrity
and encryption with or without authentication while the latter
do not provide encryption. Authentication and encryption are
implemented by AES with 128-bit key length and chaining
message authentication codes, respectively. Bluetooth also
support privacy by allowing devices to use random addresses
over the time, which can be revealed only with a proper key.

C. Summary and Insights

Based on the broad range of IoB applications, this section
first presented requirements for QoS, safety, power efficiency,
form-factor, security, confidentiality, and privacy. As a result of
the conflicting objectives, there are inextricably interwoven re-
lations among these requirements. For example, provisioning a
high QoS demand (e.g., URLLC) requires sophisticated signal
processing techniques and advanced communication modules.
Resulting computation and hardware complexity inherently
conflict with power efficient and small form factor design.
Likewise, security and privacy measures have a direct impact
on overall system design and network architecture due to its
limitations of the QoS performance. Therefore, future IoB
standards should sufficiently address these main requirements.

3This complies with FCC’s SAR specification of 1.6 W/kg in 1 g body
tissue.
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In this regard, we presented three main BAN standards as
an initial point for communication and networking standard
of the IoB: IEEE 802.15.4, IEEE 802.15.6, and Bluetooth LE.
The IEEE 802.15.4 standard (i.e., ZigBee) is developed for
generic low-cost low-power WPANs operating on ISM bands.
However, it has been recognized as insufficient to address
specifics of body area communications and to support strin-
gent requirements of BAN applications. Similarly, Bluetooth
was developed as a whole protocol stack operating also on
ISM bands. Considering the ever-increasing number of IoT
devices, ZigBee and Bluetooth suffer from high interference,
co-existence issues, security threats, and being limited to on-
body communication links. Although communication modules
of almost all communication devices are capable of operating
on ISM bands, these standards do not offer a complete solution
due to their deficiency and vulnerability in supporting the wide
range of IoB applications and their requirements. Alternatively,
IEEE 802.15.6 is dedicated to BANs with three different
PHY options: NB (MICS, WMTS, ISM, MBAN), UWB, and
HBC. To provide readers with a better insight into these
communication bands, we present a qualitative comparison
of different technologies in Fig. 4. These wide variety of
spectrum ranges pave the way for a better system design
tailored to the specific needs of IoB applications because
communication channels in-on-and-around the human body
have significantly distinctive behaviors at different spectrum
bands. In what follows, we delve into reasons behind these
behavioral changes based on the electromagnetic properties of
the human body.

III. HUMAN BODY: BIOELECTROMAGNETICS, PHANTOMS,
AND PROPAGATION MECHANISMS

Bioelectromagnetics (BEM) is the study of the interaction
between electromagnetic (EM) fields and biological entities
such as living cells, tissues, and organs. Therefore, it provides
the fundamental insights into the electromagnetic properties
and behaviors of the human body. In this way, electromag-
netic propagation characteristics in-on-and-around the human
body can be understood and modeled in a precise manner.
In this section, we first discuss dielectric properties of the
human body, which are of utmost importance to understand
the propagation characteristics and improve the accuracy of
both analytical and numerical methods. Instead of human
and animal experimentation, dielectric data can be useful to
create body phantoms to mitigate cost, complexity, and ethical
constraints. Second, we introduce a review of physical and
numerical body phantoms. The third subsection presents EM
computational tools that simulate EM propagation based on
the numerical body phantoms.

A. Bioelectromagnetics of Human Body
The response of the human body to EM field exposures can

be examined at the cellular and tissue level. The cellular level
is characterized by dielectric properties of cell membranes
as well as intracellular and extracellular fluids [45]; At only
10 nm of thickness, the cell membrane shows the highest
resistance and capacitance as a result of its composition of
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Zm Ñ 8 as f Ñ 0

ZiZm Ñ 0 as f Ñ 8Zm

Fig. 5: Electric circuit representation of biological tissue.

Fig. 6: Dielectric properties over the frequency spectrum.

phospholipids and proteins. On the other hand, the intracellular
fluid has relatively higher resistance than the extracellular fluid
that unites the cell to form the tissue. The electrical properties
of the extracellular fluid are mainly determined by its moisture
content and inorganic composition. Accordingly, the dielectric
properties of tissue can be represented by an equivalent electric
circuit [46], as shown in Fig. 5 where subscripts m, i, and e

refers to the cell membrane, the intracellular fluid, and the
extracellular fluid, respectively. Notice in Fig. 5 that the cell
membrane impedance Zm reaches zero and infinity as the
frequency goes to zero and infinity, respectively. Accordingly,
the equivalent electric circuit reduces to only Ze and a parallel
circuit of Ze{Zi at low and high frequencies, respectively.
Since electrical properties of the human body varies with
frequency, we next discuss the frequency-dependent dielectric
properties including permittivity, conductivity, permeability,
absorption, and penetration depth.

1) Permittivity, Conductivity, and Permeability: Propaga-
tion mechanisms of EM fields are mainly characterized by
three properties: permittivity is denoted by " and measured
in [F/m]; conductivity is denoted by � measured in [S/m];
and permeability is denoted by µ and measured in [H/m]
[44]. Since permeability of the nonmagnetic human body is
considered to be almost the same with the free space [47],
we focus our attention on frequency-dependent properties of
permittivity and conductivity. The human body is regarded as a
frequency-dependent lossy dielectric medium. Its permittivity
is given by " “ "0

´
✏r ´ j

�
!"0

¯
, where "0 is the permittivity

of free space, "r is the relative permittivity (dielectric con-
stant), ! “ 2⇡f , and � “ �i ` �d is the conductivity which
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TABLE II: Comparison of the physical HBPs.
Cost Complexity Durability Reusable/Adjustable Frequency Accuracy

Liquid Low Low Short-Term Yes/Yes 400 MHz-2 GHz Low-Medium
Semiliquid Low Low Short-Term Yes/Yes 7-868 MHz Low-Medium
Semisolid Medium Medium Medium-Term No/No 0.2-10 GHz Medium-High
Solid High High Long-Term No/No 1 MHz-10 GHz Medium-High

is a superposition of ionic conductivity �i and displacement
conductivity �d. As shown in Fig. 6, the frequency-dependent
nature of the complex permittivity can be characterized by ↵,
�, and � dispersion regions corresponding to the frequency
orders of kHz, MHz, and GHz, respectively [48]. While the
↵ dispersion is more related to ionic diffusion at the cell
membrane, the � dispersion is primarily due to the polarization
of the cell membrane, which basically behaves as a barrier
to ionic flows between intracellular and extracellular fluids.
Lastly, � dispersion is constituted by the polarization effects
of protein and other inorganic molecules.

The early efforts on dielectric properties of different tissue
types are presented in [49] where 20 different tissue types are
measured over 1 MHz to 20 GHz spectrum range and key pa-
rameters are tabulated to compute above analytical models. An
on-line database is available at FCC website4 which provides
parameters of different tissue types to calculate 4-Cole-Cole
expression for frequencies ranging from 10 MHz to 6 GHz.
These datasets show that high water content tissues (e.g., blood
and muscle) have a higher permittivity and conductivity than
the low-water content tissues (e.g., bone and fat). Since the
water content of tissues reduces with age, aging has a negative
impact on permittivity and conductivity [50].

2) Absorption and Penetration Depth: Another important
frequency-dependent parameter is the number of wavelengths
per unit distance, which is also referred to as the wavenumber,
k “ k0

?
µ" where k0 is the free-space wavenumber and

µ is the relative permeability. According to Beer-Lambert
law, the intensity of the propagating electric field inside the
human body is given by E “ E0e

jp!t´kdq where d is the
propagation distance and E0 is the electric field at the body-air
surface. This clearly shows that the electric field exponentially
decays with the product of wavenumber and distance, which
differs from free space wave propagation. The penetration
depth (skin) �p is also frequency-dependent as it is inversely
proportional to the imaginary part of the wavenumber, i.e.,
�p91{ Impkq. Since the wavenumber is a function of ", the
water content of tissue also has a direct impact on the
penetration depth. That is, penetration depth increases with
decreasing frequency and increasing water content. As a result,
one can conclude that low frequencies are more suitable for
in-body communications due to its high penetration depth and
low propagation loss. On the other hand, higher frequencies
yield a smaller SAR due to low penetration depth and high
conductivity, which is obvious from SAR “ �E

2{⇢ where ⇢

is the mass density.

B. Human Body Phantoms (HBPs)
To validate the safety and evaluate the performance of

IoB devices, their EM interaction with the human body must

4https://www.fcc.gov/general/body-tissue-dielectric-parameters

TABLE III: Categorization of physical HBPs.
Body Part Ref. Frequency P/T (F) Structure Tissues

[51] 402 MHz P (L, HO) ANM, CU s
[52] 400 MHz P (L) ANM g
[53] 835-925 MHz T (S, HO) - m, br, sk
[54] 0.9 GHz P (L, HO) ANM t liquid (equiv.)
[55] 0.9 GHz P (L, ML) ANM, RE bo, br, e, g, m, s, w
[56] 0.9 GHz P (L, HO) ST br liquid (equiv.)
[57] 7 MHz P(SL, HO) ANM br

[58]–[60] (0.9, 1.5) GHz P (S, HO) ANM head equiv.
[61] (0.9, 1.75, 1.95) GHz P (L, HO) ANM t (head equiv.)
[62] (0.9, 1.8) GHz P (L, HO) ANM head liquid (equiv.)
[62] 0.9-2 GHz P (L, HO) ANM t (equiv.)
[63] 2.4 GHz P (S, HE) ST bo, g, m, s, w
[64] 2.45 GHz P (S, HE) BO bo, s, g, m
[65] 1 MHz - 10 GHz P (S, ML) L, SP g, f, m
[66] 0.2-3 GHz P (SS, ML) CU, SP br, sk

[67], [68] 0.5-4 GHz P (SS, HE) MRI b, e, g, w
[69]–[72] 1-4 GHz P (SS, HE) ANM g, h, sc, sk, w
[73], [74] 2-5 GHz P (SS, ML) ST s, bo, g, w

[75] 3-6 GHz T (SS, HO) BO t

Head

[55] 0.9 GHz P (L, HO) ANM, RE br, bo, m, sk
[76] 868 MHz P (SL, ML) Assumed f, m, sk

[77], [78] 2.45 GHz P (L, HO) BO m
[79] 2.45 GHz T (L, HO) - f, m
[80] (8.5, 10) GHz T (SL, HE) - bo, f, m
[81] <30 MHz T (SL) - m
[82] 5-40 MHz T (SS) - t (various)
[83] 0.1-1 GHz T (L, S, HO) - bo, br, l, m
[84] 0.9-3 GHz T (L, HO) - avg. torso prop.
[85] 0.9-10 GHz T (SS, HO) ST m

Torso

[86] 3-6 GHz T (SS, HO) - body and head
[87] 80-500 MHz P (SS, HE) ANM bo, f, m, tu
[88] 0.6-6 GHz P (S, HO) ANM hand (b, f, m, te, s )
[76] 0.9 GHz P (S, HO) ANM t (various)

[87], [88] 55-65 GHz P (SS, HO) ANM s

PH
Y

SI
C

A
L

PH
A

N
TO

M
S

Limb

[89] 57-64 GHz P (SS, HO) RE s
P/T (F) P: Phantom, T:Tissue, HO: Homogeneous, HE: Heterogeneous, ML: Multilayered

Materials L : Liquid, SL: Semiliquid, S: Solid, SS: Semisolid

Structure ANM: Anthropomorphic, CU: Cubic, CY: Cylindrical, HM: Hemispherical,
RE: Realistic, ST: Stylized, BO: Box shaped, L: Layered, SP: Spherical

LE
G

EN
D

Tissues bl:blood, bo: bone, br: brain, e: eye, f: fat, gl: gland, g: gray-matter,
l: lung, m: muscle, s: skin, sc: scalp, sk: skull, w: white-matter, te:tendon, tu:tumor

go through a quantitative and precise investigation in all
the possible operation scenarios. However, regulatory bodies
require experimental studies on human subjects and human-
related materials to receive ethical clearance, which has strict
constraints on scientific, physical, and psychological risk lev-
els. To this end, body phantoms mimic dielectric properties
of the human body by either numerical or physical models.
Thus, body phantoms are useful to system modeling and op-
timization before human clinical trials. In addition to medical
purposes (e.g., X-Ray, hyperthermia, MRI, diagnosis & treat-
ment), body phantoms are also used for SAR measurements,
EM dosimetry, implantable & wearable devices. The HBPs
can be classified into physical and numerical for experimental
and computational type of research, respectively. We provide a
taxonomy of physical and numerical HBPs types in the sequel.

1) Physical HBPs: Based on the chemical compound ingre-
dients, the physical HBPs are categorized into liquid, semiliq-
uid, semisolid, and solid; which can be further categorized
based on body parts (e.g., head, torso, limb, breast, etc.) or
tissue types (e.g., low and high water content). Before delving
into the details, we refer interested readers to Table II for
comparison among different physical HBPs.

a) Liquid HBPs: Liquid HBPs are the first and oldest
phantom type that is especially suitable for high water content
tissues with high dielectric properties. Therefore, water is
the main ingredient whose permittivity and conductivity is
adjusted to different tissue types by adding various solvable
(e.g., sugar and salt) or dis-solvable (e.g., flour and oil) liquid
mixtures. Fabrication procedure of several liquid phantoms is
discussed in [90]. The prepared formulas are generally poured
into thin containers with low dielectric properties. Depending
on the application, the container may have a shape of regular
prisms, body parts, or the whole body.

The liquid HBPs have the virtues of low cost and complexity

https://www.fcc.gov/general/body-tissue-dielectric-parameters
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fabrication and suitability for place/replace the measurement
probes/sensors. Liquid materials are reusable and adjustable
to confine to different dielectric properties by adding extra
ingredients. However, they have short-term durability because
of the dehydration and mold growth [90]. Moreover, they are
limited by frequency ranges up to 6 GHz [91]. Due to the
suspension of insoluble ingredients, formula is required to be
stirred, which may result in minor changes in the electrical
properties [92]. Lastly, the liquid HBPs may have inaccurate
SAR measurements for two reasons [93]: 1) dielectric proper-
ties of the container are different from that of liquid, and 2)
homogeneity of liquid formula limits the accurate modeling
of tissue heterogeneity. In [94], [95], authors were the first to
develop a multi-layer arm phantom for the five basic tissue
layers: skin, fat, muscle, cortical bone, and bone marrow. The
model’s high accuracy and perfect match are validated by
experiments on real subjects.

b) Semiliquid and Semisolid HBPs: Semiliquid (gel)
and semisolid (jelly) phantoms are fabricated from coagulant
materials [96]. Unlike the liquid materials, the semiliquids do
not suffer from suspension and sustain the homogeneity for
a longer duration. Noting that the semiliquid share the rest
of liquid phantoms’ virtues and drawbacks, their fabrication
takes a relatively long time as slow and continuous rotation is
necessary to prevent trapping air bubbles [97].

Unlike the liquid and semiliquid HBPs, the semisolid
materials can independently conform to any shape, which
eliminates the need for an outer shell. Moreover, their non-
diffusive and castable nature allows a multi-layered fabrication
to mimic the anatomical structure of the human body more
realistically. The fabrication procedure of semisolid materials
is outlined in [98]. The semisolid HBPs have the virtues
of medium-complexity and medium-cost fabrication. Even
though the majority of the semisolid HBPs presented an
accurate and stable nature for a wide frequency range up to
11 GHz [91], their accuracy is also studied at 55-65 GHz
mm-Wave bands [99], [100]. However, they have medium-term
durability because of the dehydration and mold growth [98].
Moreover, replacing the measurement probes and sensors may
cause the deformation of the phantom shape. Unlike the liquid
and semiliquid HBPs, they are neither reusable nor adjustable.

c) Solid HBPs: Solid HBPs can be manufactured from a
mixture of wide variety of materials. Fabrication procedure of
solid phantoms can be found in [101]. They can preserve their
dielectric properties for an extended period of time since they
are not subject to dehydration. However, their fabrication has
high-complexity processes involving extreme pressures and
temperatures. The complexity and the need for expensive raw
materials increase the overall cost. Moreover, they are limited
by frequency ranges up to 6 GHz [91]. Similar to the semisolid
HBPs, they are neither reusable nor adjustable, and it is not
possible to replace the measurement probes and sensors. We
refer interested readers to Table III for a list of references
categorized based on body parts.

2) Numerical HBPs: Thanks to the ever-increasing com-
putational power, numerical simulations are powerful tools
to analyze the radio propagation characteristics of the human
body. Numerical HBPs are based on a digital representation

TABLE IV: Classification of Numerical HBPs
Type References Model/Shape Gender Age Resolution (mm)

[51], [55], [59] Cylindrical Arm Model - 0-90 -
[103] Spherical phantom - - -

[104]–[106] Multilayered sphere model of the human skull - - -
[107] Cylindrical model for whole body - - -

H
om

og
en

.

[108] Three-layered elliptical model of the human body - - -

All 5-84 Head: 0.5 x 0.5 x 1.0
Torso + Limb: 0.9 x 0.9 x 2.0

[110], [111] Virtual population F, A 26 Body: 2
Implant: 0.5

F, M, A 26-34[110], [111] Virtual Family M, F, C 6-11
Head: 0.5 x 0.5 x 1.0

Torso + Limb: 0.9 x 0.9 x 2.0
[102] Dielectric anatomical model M, A 34 2 x 2 x 2

F, M, A 38-40 -
-[112] GSF family C 2, 7 -

[113] Visible human model - - -
[114] Japanese Avg. Male and Female F, M, A 22 2 x 2 x 2

H
et

er
og

en
eo

us

[115] Chinese Visible Human project F, M, A 22-35 1 x 1 x 1
Legend | M: Male, F: Female, A: Adult, C: Children

of the human body anatomy, which is generally obtained by
magnetic resonance imaging (MRI) and computed tomography
(CT). MRI and CT provide gray-scale images of resolutions
in the order of millimeters, which then goes through coloring
and segmentation processes to interpret different colors into
various tissue types. In this way, each segment is associated
with the corresponding permittivity and conductivity values
to solve Maxwell equations [45]. Noting that segmentation
is cumbersome and time-consuming, an alternative approach
is using anthropomorphic numerical models, which are also
referred to as dielectric analytical models. These models semi-
automatically correlate the gray-scale images to the complex
permittivity values by means of continuous transfer functions
[102]. Numerical HBPs are categorized into homogeneous and
heterogeneous models depending on the homogeneity of the
tissue and phantom of interest. We refer interested readers to
Table IV for a list of numerical HBPs discussed below.

a) Homogeneous HBPs: The homogeneous HBPs are
generally in the form of simple geometric shapes such as
cylinders, spheres, parallelepipeds, etc. They are generally
used to evaluate EM dosimetry applications where the EM
field is radiated from simple sources [93]. While spherical
phantoms are mainly used for dosimetry inside the human
head [103]–[106], cylindrical models are used for whole-body
models [107], [108]. A 200-mm3 cube and a 200-mm diameter
sphere models is also proposed in [109]. The Homogeneous
HBPs are also used for the confirmation of the validity of
numerical tools covered in the next sub-section.

b) Heterogeneous HBPs: The heterogeneous HBPs are
also known as volumetric or voxel phantoms as they consist of
volumetric cells, i.e., voxels. Their accuracy increases with the
number of voxels at the expense of more computation and time
complexity. Since the human body exhibits different dielectric
properties of different ages and genders, some models provide
a set of male and female HBPs at various ages, such as Virtual
Family [110], Virtual Population 3.0 [111], and GSF family
[112]. There are also phantoms dedicated to different nations
such as the Visible Human Model of U.S. National Library of
Medicine [113], Japanese male and female model [114], and
Chinese adult model [115].

C. Numerical Propagation Characterization Methods
Apart from dosimetry applications and SAR measurements,

numerical modeling of RF propagation has distinct features
since the human body acts as a transmission medium and/or
reflectors. If transceivers are located in-on-and-around the
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human body, radio propagation paths and their gains un-
dergo large variations, especially when the polarization and
orientation of antennas change with the body postures. Such
variations are significant for microwaves because body di-
mensions are large compared to the wavelength. Thus, semi-
analytical computational EM approaches are extremely useful
to investigate the radio propagation around the human body
and gain a deep insight into the underlying physics. On the
contrary of simplified theoretical model and analyses, numer-
ical simulations can afford the simulation of very realistic and
accurate scenarios based on the numerical phantoms presented
in the previous section. In the following sections, we briefly
outline wide-spread computational EM methods.

1) Ray Tracing (RT): Scattering, reflection, and penetration
are the three basic propagation phenomena to describe the
interaction between the surrounding environment and the prop-
agating waves. If the objects are larger than multiple signal
wavelengths, RT techniques can provide efficient and accurate
results based on high-frequency asymptotic methods. Based
on geometrical optics, the geometrical theory of diffraction
(GTD) can calculate the reflected and refracted fields from
and through surfaces [116]. Since it ignores the diffractions
from curved surfaces and corners, GTD is inefficient in taking
the multiple reflections into account, which can be mitigated
by the uniform theory of diffraction (UTD) [117]. RT is highly
popular, especially with the accurate and efficient calculation
of key parameters such as power delay profile, received signal
strength, delay spread, and angle of arrival [93]. Therefore, RT
techniques are also studied in body-centric communications
[117]–[122].

2) Method of Moment (MoM): This method is developed
to solve complex integrals by reducing them to a system of
simpler linear equations using Harrington’s weighted residuals
techniques [123]. It is especially efficient for cases where
volume is large compared to the surface such that solving
Maxwell’s equations over the entire volume of interest is not
necessary. The MoM has a time complexity of O `

N

2
˘

and
is not suitable for parallel computing methods [91], which
limits its use to simple homogeneous geometries. Therefore,
complexity poses considerable restrain on its application to
IoB, where the received signal strength in/on the human body
is required to be known. The MoM is mostly suitable for
thin-wire structures and applicable in both time and frequency
domains. Therefore, it is generally employed to study body
propagation of loop wire antennas [124]–[128].

3) Finite Element Method (FEM): FEM analyses EM
structures by dividing them into a number of isoparametric
elements in various shapes, e.g., rectangular and triangular. In
this way, it is suitable for the propagation analysis of structures
with curved boundaries. Since it is formulated by a set of linear
equations, a major disadvantage of FEM is the time complexity
of matrix solution. Denoting the number of rows and columns
of stiffness matrix by the N and W , Farmaga et al. evaluated
the complexity order of FEM as O `

NW

2
˘

[129], which turns
out to be the highest among other numerical approaches. Since
it is well-suited to MHz frequencies, it is mostly used for IoB
applications operating at HBC frequencies [130]–[135] [c.f.
Section V-B2].

4) Finite-Difference Time-Domain (FDTD): Since it was
proposed by Yee in 1966 [136], FDTD has become one of
the best-known and widely-adopted numerical methods in
computational electromagnetics. Similar to FEM, it is capable
of analyzing large, complex, and heterogeneous EM structures
by dividing them into simpler elements. Unlike the high
complexity of the previous methods, FDTD has a linear time
complexity O pNq and suitable for parallel computing methods
to handle large EM structures in finer resolutions [137].
However, this low complexity is at the expense of not being as
flexible as the FEM method on curvy EM structures such as
the human body [93]. The FDTD has found its place to model
human head or entire body for SAR measurement purposes
[138]–[142]. This method is also used in HBC application to
measure the electric field around the human body [143]–[147].
It is shown in [145], [146] that most of the electric field is
concentrated around the tip and surface of the arm [c.f. Section
V-B2].

D. Summary and Insights
This section provided the fundamental insights into the

electromagnetic properties (e.g., permittivity, conductivity, per-
meability) and behaviors (e.g., absorption and penetration
depth) of the human body. The tools and models presented
help researchers gain a deeper understanding and perform
accurate modeling of the propagation characteristics in-on-
and-around the human body. Since dielectric properties are
frequency dependent, overall propagation loss of in/on body
links heavily depends on frequency, distance, and tissue
properties along the propagation paths. Unlike the in-body
links, the communication on and around the human body is
jointly determined with electromagnetic interaction with the
surrounding environment.

In order to validate the safety and characterize the channels,
it is necessary to investigate EM interaction of IoB devices in
a quantitative and precise manner. However, ethical constraints
on conducting experiments on living subjects has led to devel-
opment of physical and numerical body phantoms that mimic
the dielectric properties of the human body. Accordingly,
we surveyed physical (e.g, liquid, semi-liquid, semi-solid,
solid) and numerical (e.g., homogeneous and heterogeneous)
phantoms in a comprehensive manner. Indeed, body phantoms
are extensively used for SAR measurements and channel char-
acterization especially for in/on body communication devices
due to the technical challenges in locating transceivers inside
the body [c.f. Section IV]. The numerical body phantoms are
particularly important for developing numerical propagation
characterization methods such as RT, MoM, FEM, and FDTD.
FEM and FDTD have been mostly used to validate the
analytical and empirical HBC channel models [c.f. Section
V].

IV. NB & UWB CHANNEL MODELING

An accurate channel model is an initial and essential step
for well-designed IoB communication and networking sys-
tems. However, modeling the communication channels within
the proximity of the human body substantially differs from
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traditional communications. This is mainly because of the
heterogeneous frequency-dependent dielectric nature of the
human body that has relatively high permittivity and conduc-
tivity. Therefore, signal attenuation is mainly affected by the
carrier frequency, the distance between transceivers as well as
tissue dielectric properties along the propagation path, body
curvatures, changing body postures, and so on.

For the sake of a better organization, we define three
different IoB types based on their location on the human body:

I: In-Body IoB nodes are either implanted or embedded
devices located in deep tissues/organs or under the human
skin, respectively;

O: On-Body IoB nodes are located on or within 2 centime-
ters around the body surface;

E: Off-Body IoB nodes are external devices located 2 cen-
timeters to several meters away from the body surface;

which results in the following combination of link types:
a) I/I: In-Body to In-Body, b)I/O: In-Body to On-Body, c)
I/E: In-Body to Off-Body, d) O/O: On-Body to On-Body,
and e) O/E: On-Body to Off-Body. Depending on the IoB
node location, the link budgets may be dominated by various
channel characteristics. For example, in-body links (I/I and
I/O) suffer from severe signal attenuation due to absorption
and scattering effects of heterogeneous body tissues, whereas
multipath fading and shadowing are more significant for on-
body links (O/O and O/E) due to body postures, body move-
ments, and reflecting surfaces in the surrounding environment.
Of course, these links exhibit distinct behaviors at different
node locations and frequency bands.

In the remainder of this section, we investigate NB & UWB
channel modeling based on the first-order and the second-order
channel statistics. While the first-order statistics account for
mean and covariance of the signal attenuation, the second-
order statistics are related to a variety of communication
paradigms such as delay spread, power delay profile, level-
crossing rate, Doppler spread, auto-correlation and cross-
correlation, and so on.

A. The First-Order Channel Statistics (FOCS)
Based on the magnitude of variation in signal decay, the

FOCS can be categorized into large-scale and small-scale
signal attenuation. Hence, path loss and shadowing contribute
to the large-scale FOCS, while multipath fading is the main
reason for slight variations in the signal attenuation.

1) Large-Scale FOCS (Path Loss & Shadowing): The large
scale signal attenuation is mainly characterized by two phe-
nomena; absorption and scattering. While the former is due
to the lossy dielectric properties of body tissues, the latter is
because of the heterogeneity of body tissues. On the other
hand, shadowing is defined as random variations in signal
decay and caused by creeping waves at low frequencies and
diffractions existing in shadowed regions of the body surface.

Hence, large-scale fading is often presented as a combina-
tion of path loss and shadowing. Based on the empirical data
obtained from channel measurements, the relation between
path loss and channel distance is often represented by five
different parametric models: The first and the most basic

model assumes that path loss PLpdq [dB] linearly varies with
distance d

Model A: PLpdq “ C ` ↵d ` S (1)

where d [m] is the distance between IoB nodes, C [dB] is
a constant term that generally refers to the path loss at a
reference distance, ↵ is the slope parameter, and S [dB] is
the log-normal shadowing component that follows a Normal
distribution with a standard deviation of �s, S „ N `

0,�

2
s

˘
.

In the second model, path loss varies with a power of the
distance as follows

Model B: PLpdq “ C ` ↵d

n ` S (2)

where n is the path loss exponent. The third model combines
log-distance path loss model with log-normal shadowing for
a given reference distance

Model C: PLpdq “ PLpd0q ` 10n log10

ˆ
d

d0

˙
` S, (3)

where PLpd0q [dB] is the path loss at the reference distance
d0 [m]. Notice that (3) reduces to free-space radio propagation
model for n “ 2. The fourth model employs the following
linear fitting model

Model D: PLpdq “ ↵ log10pdq ` � ` S, (4)

where ↵ and � are linear fitting coefficients. The last model
follows an exponential decay that flattens out for large distance
as a result of the contribution of multipath components from
indoor environment

Model E: PLpdq “ ´10 log10pP0e
´M0d ` P1e

´M1dq ` S,

where P0 [dB] is the average loss close to the antenna; P1

[dB] is the average attenuation of the transmitted signal that
is reflected back by indoor environment; M0 [dB/cm] is the
average decay rate for the surface wave traveling around the
perimeter of the body; and M1 [dB/cm] is the average decay
rate for reflected signals.

2) In-Body Link Budgets (I/I-I/O-I/E): The implanted IoB
devices support a wide variety of medical applications such
as defibrillators, cardiac pacemakers, swallowable endoscopy
capsules, glucose and bladder pressure monitors, smart pills
for precise drug delivery to a target body location, and
micro-robots used for the execution of biopsy and therapeutic
procedures [148]. Due to ethical concerns and technical chal-
lenges, experimental in-body channel measurements are not
possible on human subjects. Therefore, the implant channel
characterization campaigns are carried out through measure-
ments on experimental body phantoms or through simulations
on numerical body phantoms, as explained in the previous
section. There are two potential spectrum bands for in-body
communication: MICS and lower UWB.

IEEE 802.15.6 standard allocated the MICS band for
in-body links thanks to its favorable propagation behavior
through human tissues and support for the use of small-
size antennas. The Channel Modeling Subgroup of TG15.6
determined that Model C in (3) is a good fit for in-body
channels. The mean value of in-body signal attenuation is
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TABLE V: In-Body Parametric Path Loss Models
In-Body Parametric Path Loss Models

Ref. Band Frequency Model Link Description

[149] MICS 402-405 MHz Model C I/I
I/O IEEE Std. 802.15.6

MICS 402-405 MHz
WMTS 863-870 MHz[153]

ISM 2.4-2.5 GHz
Model C I/I

I/O
SIM: Finite integration technique
EXP: Phantom Body

MICS 402-405 MHz[154] ISM 2.4-2.5 GHz Model D I/O EXP: Human/Phantom Body

Model A* I/I
I/O[155] ISM 2.4-2.5 GHz Model C* I/E STAT: Liquid phantom

[156] UWB 1-6 GHz Model B I/I SIM: Finite integration technique

[157] UWB 3.5-4.5 GHz Model B I/I SIM: CST Studio software
EXP: Pig tissues

[158] UWB 3.4-4.8. GHz Model C* I/O SIM: FDTD, EXP: Liquid Phantom
[159] UWB 3.4-4.8. GHz Model C I/O SIM: FDTD

[160] UWB 2-6 GHz Model C I/I SIM: Frequency dependent path
loss based on FDTD simulations.

caused by the lossy dielectric nature of human tissues whilst
shadowing is because of the varying dielectric properties of
different organs/tissues along the propagation path [19]. In
order to obtain a statistical channel model, a 3D immersive
visualization and simulation platform is developed, and mea-
surements are obtained for near-surface (cardiac pacemakers)
and deep tissue (endoscopy capsule) devices [149]–[151].

Albeit having favorable in-body propagation characteristics,
the limited bandwidth of MICS systems does not support high-
speed communication. Hence, UWB systems have emerged as
an attractive alternative with the following attributes [152]:
As a result of the low maximum effective isotropic radiated
power (EIRP) spectral density, noise-like nature of UWB
signals makes signal detection hard to unintended receivers.
This inherent UWB feature increases the robustness of UWB
systems against jamming, thereby mitigating the need for
sophisticated encryption algorithms in low-cost transceivers
[19]. Moreover, the simple structure impulse radio (IR) UWB
transceivers facilitate miniature and low-power UWB systems.
Table V lists different frequency bands and parametric path
loss models used for I/I and I/O link configurations.

3) On-Body Link Budgets (O/O-O/E): Unlike the regular
outdoor and indoor RF channel characterization, propagation
between two points on the human body has subtle distinc-
tions. Although off-body communication (e.g., from an access
point to a mobile handset) considers a sitting/standing person
stationary, this is not a valid assumption for channel charac-
terization between transceivers located on the human body.
In addition to the environmental changes, the on-body link
budgets also substantially differ from its off-body counterpart
in being affected by the changes in body postures and gaits.
For instance, the on-body link of a sitting person could be line-
of-sight (LoS) or non-line-of-sight (NLoS) based on the body
posture, which is generally considered the same in off-body
channel characterization.

The parametric path loss models for the on-body links are
tabulated in Table VI .Since technical and ethical restric-
tions of in-body communication do not apply for on-body
communications, the majority of works consider statistical
channel modeling. The experiments are often conducted in
an indoor environment by measuring S-parameters using a
fixed or hand-held vector network analyzer if the human
subject is stationary or mobile, respectively. The illustration

of S-parameter measurement can be seen in Fig. 7. From
all these statistical channel campaigns, one can infer that the
following three critical factors have a significant impact on the
measurements:

‚ Although the parametric models capture the distance-
dependent behavioral pattern, reported measurements
highly depend on experimental setup and environment.
Even measurement setups sharing the same parametric
model within similar environments report a wide range of
parameter values depending on the operational frequency
and transceiver locations. For example, belt-to-chest, belt-
to-head, belt-to-wrist links were respectively reported to
have 38.9 dB, 41 dB, and 46.3 dB of average path-loss,
which is proportional to the distance [14]. Notice that link
fluctuations due to the changes in body postures and gaits
become more significant during walking, running, and
sports activities. For example, the peak-to-peak variation
of the belt-to-chest link was recorded to be 8 dB and 21
dB during standing and moving scenarios, respectively.
These variations were much higher for chest-to-head
links, which were 44 dB and 56 dB in the stationary
and mobile scenarios, respectively. It is even possible
to observe around 4 dB variations due to involuntary
body movements (e.g., breathing) [161]. Therefore, the
generalization of these parametric models is not possi-
ble without a large parameter data set tailored to node
locations and operational frequency.

‚ Some of the works have recorded significant differences
between measurements conducted within an anechoic
chamber and daily-life indoor environments. This makes
clear that multipath fading has an impact as noticeable as
the large-scale fading. Therefore, anechoic chambers are
necessary to strip the multipath fading component away
and observe the large scale fading alone.

‚ Channel measurements are typically done by allowing
transceivers to share the instrument ground of vector
network analyzer (VNA) [c.f. Fig. 7]. This is hardly the
case for wearable devices in practice and ignores the
coupling effects. Although de-embedding antenna char-
acteristics from propagation paths are generally neglected
for on-body links, its momentous impacts on human body
communication channel characterization are thoroughly
investigated [c.f. Section V].

4) Small-Scale FOCS (Multipath Fading): As a result of
body motions and posture changes, multiple paths are formed
between the transmitter and receiver. Consequently, a received
signal may end up as the superimposition of several delayed,
attenuated, time-varying, and eventually distorted replicas of
a transmitted signal [45]. The first-order small-scale statistical
modeling studies mostly focus on on-body links as they are
most vulnerable to multipath fading phenomena. Measured or
simulated channel gain data is generally fitted to statistical
distributions, which are commonly used to describe fading
effects. These common small-scale fading distributions can be
presented under the umbrella of generalized gamma distribu-
tion as follow

fpx|a, b, cq “ px
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b

ap
�paq exp

”
´

´
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Fig. 7: Illustration of S-parameter measurements.

TABLE VI: On-Body Parametric Path Loss Models
On-Body Parametric Path Loss Models

Ref. Band Frequency Model Link Description

[162]

MICS
WMTS

ISM
UWB

400-450 MHz
608-614 MHz
950-956 MHz
2.4-2.5 GHz
3.1-10.6 GHz

Model D O/O

IEEE Std. 802.15.6
STAT: Body phantom meas.
in hospital room and
anechoic chamber.

ISM 902-928 MHz
2.4-2.5 GHz Model E O/O

[163] UWB 3.1-10.6 GHz Model C O/O
IEEE Std. 802.15.6
STAT: Body phantom meas.
measure. in office
environment.[164] ISM 2.4-2.5 GHz Model C O/O STAT: Human body meas.
SIM: FDTD

[165] ISM 902-928 MHz
2.4-2.5 GHz

Model C
Model E O/O STAT: Indoor human body meas.

[166] UWB 3-6 GHz Model C O/O STAT: Indoor human body meas.
[167] UWB 3-6 GHz Model C O/O STAT: Indoor human body meas.
[168] UWB 4.2 GHz Model C O/O STAT: Indoor human body meas.
[169] UWB 3-10 GHz Model C O/O STAT: Indoor human body meas.
[170] UWB 2-8 GHz Model C O/O STAT: Indoor human body meas.
[171] UWB 3-6 GHz Model C O/O STAT: Indoor human body meas.
[172] UWB 3-10 GHz Model C O/O STAT: Indoor human body meas.
[173] UWB 3-6 GHz Model C O/O STAT: Indoor human body meas.
[174] UWB 3-9 GHz Model D O/O STAT: Liquid phantom meas.

[175] ISM 2.4-2.5 GHz Model C O/E STAT: Indoor human body meas.
with various body postures.

[176] UWB 3-10 GHz Model C O/O SIM: Distance and freq. depend.

[177] ISM 2.4-2.5 GHz Model C O/E STAT: Indoor human body meas.
with various body postures.

[178] UWB 2-10 GHz Model C O/E STAT: Indoor human body meas.
with various body postures.

where �p¨q is the standard Gamma function, a and p are
shape parameters, and b is the scale parameter. The gener-
alized gamma distribution can reduce to Rayleigh distribution
(p “ 2, a “ 1), Nakagami-m distribution (p “ 2), Weibull
distribution (a “ 1), and gamma distribution (p “ 1), and
log-normal distribution (p Ñ 0, a “ 2{pp2bpq). Based on
more than 200 statistical fits, a comprehensive comparison of
these distributions are provided in [20, & references therein].
Log-normal, Weibull, and gamma have been mostly studied
and found often to be best fits. In particular, gamma/Weibull
and log-normal/gamma distributions fit better to everyday and
dynamic activities, respectively.

Although Nakagami-m, Rician, and Rayleigh distributions
are commonly preferred to characterize small-scale fading in
regular RF channels, they have been shown to provide poor fits
for the on-body measurements [20]. This is again due to the
aforementioned distinctions of communication on-and-around
the human body. For NB channels, there is a general trend
toward modeling small-scale fading by Weibull and gamma
distribution [179].

Since the channel gain is a product of numerous factors
(e.g., diffraction, reflection, absorption, antenna gain, etc.),
their contribution to the signal attenuation is additive in
the log-domain. Since the addition of multiple log-normally
distributed paths still yields another log-normal distribution,
log-normal distribution performs well to capture these mul-
tiplicative effects in additive dB scale. This is especially
true for UWB channels with larger bandwidths. Therefore,
in comparison to NB channels, large-scale fading component
is much higher for UWB channels due to higher frequencies
[149]. This can also be observed for shadowing as shown in
Table V and Table VI.

In light of the above discussions, one can infer that small-
scale fading statistics are also subject to node locations,
dynamicity of the human body, carrier frequency, bandwidth,
and surrounding environment. In order to decide on which
statistical distribution is the best option for a specific sce-
nario, potential distributions should be compared based on
a ‘goodness-of-fit’ criterion, which typically measures the
discrepancy between observed values and the expected values
under the target model. For instance, Akaike and Bayesian
information criteria are two well-known tools that strike a
balance between the fitness and simplicity of a model.

B. The Second-Order Channel Statistics (SOCS)

FOCS concentrate on time-invariant components of the
wireless channel and target mean/variance of the underly-
ing distribution model. However, they are not sufficient to
characterize the time-variant nature of channels. The prop-
agation path on a walking/running human body randomly
changes with time since the number of reflectors and their
locations within the environment changes. This inevitably
causes random changes in delays, amplitudes, and multipath
components. At this point, it is crucial to understand time-
dependent variations of on-body links.

1) Delay spread and Power Delay Profile: In multipath
channels, the time delay spread is an important metric defined
as the time between the first and the last received signal
component of a transmitted signal. The delay spread is random
especially for mobile terminals. For example, the propagation
path of a left-wrist-to-right-hip link on a moving human sub-
ject randomly changes not only with the changing environment
but also due to the swinging arms which expose and block line-
of-sight link. If the delay spread is smaller than the inverse of
the bandwidth, then all multipath components (LoS and NLoS)
are unresolvable, which is typically the case for NB signals. In
[165], authors investigate the root mean square (RMS) delay
spread for 915 MHz and 2.45 GHz with 15 cm and 45 cm
antenna separations. They observe that the measured rms delay
spreads are on the order of a few tens of ns in the worst case
and it and follow a normal distribution.

For UWB signals, multipath components (LoS and NLoS)
are generally resolvable since the delay spread is larger than
the inverse of larger bandwidths. On the other hand, the
power delay profile (PDP) measures the intensity of a signal
received through a multipath channel as a function of the time
delay. In [167], the PDP of UWB channels is modeled as
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pp�⌧q “ ↵p�⌧q� `� [dBm], where p is the signal power for
each individual ray, �⌧ is the excess delay with reference to
the earliest arrival in ns, and (↵,�, �) are the fitting parameters.
Fitting parameters based on measurements conducted along
body-front and body-back are found to be (-28.58, 0.431,
-1.88) and (-27.33, 0.492, 0.63), respectively. This can be
interpreted as around 25 dBm signal strength loss over 1 ns
delay duration. On the other hand, fitting parameters based on
measurements conducted along front-torso and back-torso are
found to be (-5.13, 0, -24) and (-7.79, 0, -22.43), respectively.
That is, the PDP along the torso follows a linear behavior. The
RMS and average PDP for in-body UWB links is studied in
[156] where the RMS is shown to be less than 1 ns and the
average PDP ranges from -5 dB to -30 dB.

Both delay spread and power delay profile determine the
number of channel taps (i.e., significantly resolvable signal
paths) and the presence of inter-symbol interference (ISI).
Unlike the NB channels, which are well approximated by a
single tap [149], UWB channels are described by multiple
taps as they are almost 50 times wider than NB channels
specified by IEEE 802.15.6 [43]. Therefore, ISI has been
mostly observed for UWB on-body channels [173], [180].

2) Level-Crossing Rate and Average Fade Duration: The
level-crossing rate (LCR) quantifies the rate at which the signal
strength crosses a threshold, particularly at the mean path loss
and usually in the positive-going direction. Thus, the LCR
can be interpreted as a measure of the rapidity of the fading
and often used to determine the Doppler spread as it is a
function of the maximum Doppler shift. On the other hand, the
average fade duration (AFD) is the average time the received
signal is below a threshold and often used to measure the time
during which packet losses occur on a link. Therefore, a longer
AFD is not acceptable especially by URLLC applications. For
a particular threshold value, the product of the average fade
duration and the level crossing rate is a constant. Since they
are closely related to speed and amount of body movement,
they are both essential to characterize the channel dynamics
[179].

In [168], the LCR and AFD were evaluated over the 3000
channel samples for threshold values ranging from -30 dB
to 10 dB, which corresponds to 35 seconds of measurement.
The LCR and AFD have been shown for links from center
waist to a) head, b) left-arm, c) left-hand, d) and chest. The
measurements shows that LCR [Hz] has a bell shape whose
peak value (around 8 Hz) is attained at -5 dB and -3 dB for
links a-b and c-d, respectively. Interestingly, the skewness and
kurtosis of LCR curves also changes significantly with link
types, which emphasize the impact of node locations on the
channel characteristics. On the other hand, the AFD of all
links a-d is around 80 ms until -10 dB, which starts increasing
exponentially and reach to 1 second at 8 dB approximately.
Similar LCR and AFD measurements are also presented in
[181] for various antenna types. On the other hand, the AFD
of on-body links is also measured to be higher than 300 ms
[182], which is above the 250 ms latency requirement of IEEE
802.15.6 [43].

3) Auto-Correlation: Autocorrelation of a time-variant
channel determines the channel coherence time over which the

channel impulse response is considered to be invariant. Thus,
autocorrelation and average fade duration govern the duration
of successful packet transmission both together. Therefore,
they are key metrics to determine packet lengths, channel
estimation pilot intervals, and frequency of updates to the
power control [179]. While the coherence time of channel
during daily activities have been reported to be up to one
second, it reduces to 25-70 ms in case of significant and con-
tinuous body movement [179], [183]. The coherence time and
coherence bandwidth are closely related and both determine
the frequency-selective fading phenomenon. In [14], authors
roughly estimate the coherence bandwidth as 30 MHz based
on 33 ns delay in a 5 meters long room.

C. Antenna Effects

The antenna specifications at both transmitter and receiver
side have a considerable impact on the overall channel gain.
Unlike free space, the lossy dielectric nature of the human
body alters the antenna features by shifting the resonant
frequency, detuning impedance matching, modifying radia-
tion pattern, and eventually reducing the overall efficiency
[93]. Therefore, the measurements and statistical inferences
provided by empirical studies must also consider the impact
of antenna type and orientation on the measured attenuation
levels.

For on-body links, there are two crucial requirements on
antennas: as a natural result of human body’s influence on
the antenna’s reactive field, the distance between antenna and
body inherently determines the antenna matching attributes.
Therefore, the first antenna requirement is being insensitive
to the proximity of the human body. As discussed in Section
III-A, the energy absorption and skin penetration depth reduces
at high frequency ranges, which yields distinct body-antenna
interactions at NB and UWB channels. In the NB case, the
dominant and major drawback is strong mismatch caused
by the resonance frequency shift, which destroys the overall
antenna efficiency. A widely accepted approach to overcome
this issue is employing adaptive impedance matching [184]–
[186]. On the contrary, the antenna proximity to the body
slightly improves the impedance matching at UWB channels
for two reasons: The losses help the matching generally by
lowering the S11 parameter and the high permittivity tissues
shifts the band down [187].

The second antenna requirement is having an optimal radi-
ation pattern to minimize attenuation. In addition to antenna
specifications, we previously explained that the channel quality
is mainly determined by link geometry and antenna positions
which determines the propagation mode (LoS, NLoS, creeping
wave, etc.). In all these modes, the radiation pattern should be
designed to minimize the propagation through-and-off body
while maximizing the coupling between body-worn devices
[14]. Such a design is non-trivial especially if one considers the
large number of link geometry and body posture combinations.

Since the position or orientation of implant IoB cannot
be controlled, omnidirectional in-body antennas are gener-
ally preferred to directional antennas to establish a reliable
communication with a sensor array located on-or-off body
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[152]. For body-worn antennas, the radiation pattern must be
omnidirectional in the horizontal plane and the polarization
has to be vertical with respect to the human body [188].
For in-on-and-around the human body communications, a
wide variety of antenna types are investigated such as loop
antennas, monopole/dipole antennas, and patch antennas [14],
[158], [187], [188]. In addition to link loss related issues,
there are also other design parameters including endurance,
miniaturization, low-profile, low-cost, light-weight, flexibility,
comfortability, and ease of fabrication.

D. Summary and Insights

In this section, we begin with the FOCS which are mostly
dealing with the mean and variance of the channel attenuation.
The FOCS is further classified into two types: large-scale and
small-scale fading. The mean and variance of the large-scale
fading is mainly characterized by the path loss and shadowing,
respectively. We presented five different parametric model
which are commonly used to formulate composite path loss
and shadowing effects. Accordingly, we tabulated in-body and
on-body parametric path loss models in Table V and Table
VI, respectively. One can observe from Table V that most of
the developed models are based on numerical phantoms and
computational EM tools presented in Section III-B and Section
III-C, respectively. Although IEEE 802.15.6 determines the
MICS band as the main channel for implant IoB nodes, there
are also a considerable amount of works investigating UWB
channels for in-body communications. On the other hand,
on-body channels are mostly statistically characterized based
on indoor measurements in general. A common observation
across all works listed in Table VI is the discrepancies
between reported values under various measurement setting.
This is mainly because of the fact that on-body links can
be in different propagation modes (LoS, NLoS, creeping
wave) which significantly varies with possibly large number
of node locations and body postures combinations. Although
reported works record conflicting parameter values, almost all
of them share common parametric path loss models combined
with log-normal shadowing. Unlike the in-body and HBC
channels, the on-body NB and UWB links propagate in the air
while being in interaction with the surrounding environment.
Therefore, small-scale (multi-path) fading is another important
channel attributed that has been studied quite extensively. Log-
normal, Weibull, and gamma distributions have been found to
be best fit, which contradicts with the regular RF channels (off-
body) that are generally characterized by Rayleigh, Rician, and
Nagakami-m fading.

Since the FOCS are not sufficient to capture the time-variant
nature of human mobility, we also delve into the SOCS to shed
light into the various communication phenomena, including
delay spread, power delay profile, level crossing rate, average
fade duration, channel coherence time and bandwidth, and
auto-correlation. These are crucial statistics for cross-layer
optimization of the IoB network architecture under dynamic
channel conditions. Lastly, we pointed out the impacts of
antenna features on the channel attenuation measurements.
Indeed, antenna radiation pattern and its proximity to the

body has significant influence on shifting resonant frequency,
detuning impedance matching, modifying radiation pattern,
and finally reducing the overall efficiency. Therefore, it is
necessary to quantify antenna gain along with other factors
affected by the measurement set-up.

V. HBC CHANNEL MODELING

In previous section, we delved into the channel characteris-
tics of in/on body wireless links where NB and UWB signals
propagates in/around the human body. HBC is an alternative
and promising wireless approach that uses human skin tissues
as a communication channel, thus it is also referred to as
body channel communication (BCC) or intra-body commu-
nication (IBC). HBC couples communication signals to the
body through electro-static or magneto-static field via trans-
mitter electrodes, which are captured by receiver electrodes
on another part of the body. It is worth noting that such
a communication is possible due to the bio-electromagnetic
properties of the human body, which is covered in Section
III-A.

The HBC channel is specifically confined to frequency band
between 100 kHz and 100 MHz for two reasons [15]: 1)
Frequencies lover than 100 kHz is susceptible to all sort of
EM interference, and 2) At frequencies above 100 MHz, the
human body acts as an antenna since the carrier wavelength
reaches to the length of human body parts, where there is no
longer HBC. This yields a carrierless communication scheme
and decouples the transceiver size from the carrier wavelength.
Operating on such low frequencies also have advantages in
terms of modem complexity, power efficiency, physical layer
security, safety, and so on.

In this section, we first provide an overview of three main
coupling methods: galvanic coupling, capacitive coupling,
and magnetic coupling. After that, we focus on channel
characterization techniques which are based on analytical,
numerical, circuit, and empirical models. Finally, we discuss
how HBC channels are affected by human body movements
and dynamics of the surrounding environment.

A. An Overview of Coupling Methods
1) Capacitive Coupling (CC): The capacitive coupling, also

known as near-field coupling or electro-static coupling, was
first proposed for personal area networks by Zimmerman in
1995 [189]. The CC is illustrated in Fig. 8 where signal
electrodes of both transmitter and receiver are attached to
the skin whilst the ground electrodes are kept floating in
air. The stimulated electric field on the signal electrode of
the transmitter induces an electric flow on the signal path
through the human body and a external return path through
the surrounding environment (i.e., air). In other words, the
conductivity of body not only generates the forward path
but also creates a backward path by coupling electric field
to the environment, the earth ground, and electrodes’ ground
plates [24]. For this very reason, the CC is more sensitive
to environmental changes (e.g., appearance of nearby metallic
objects and wires) and susceptible to interference caused by
devices radiating electric fields.



15

Spectrum Analyzer

Instrument
Ground

Signal Gen.

Earth Ground

Balun

Signal
Path

Ground Electrode

Parasitic
Paths

Return
Paths

Signal Electrode

Fig. 8: Illustration of capacitive coupling based HBC.
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Fig. 9: Illustration of galvanic coupling based HBC.

2) Galvanic Coupling (GC): The galvanic coupling was
first demonstrated in [190] where Handa et. al. coupled the
modulated ECG signals to the human chest, that are received
by a pair of electrodes on the wrist. The GC is illustrated in
Fig. 9 where both signal and ground electrodes of transmitter
and receiver are in contact with skin. On the contrary to
CC, the GC is independent of environmental affects since
the signal is mostly confined within the human body. GC
is suitable for short distances („ 15 - 40 cm) and low
frequencies († 1 MHz), which restricts its suitability for QoS
demanding applications [15]. Its stable and reliable channel
conditions make the GC is a good option to periodically
transmit physiological data especially using devices embedded
underneath the skin [24].

3) Magnetic Coupling (MC): Unlike CC and GC, magnetic
coupling exploits the electromagnetic resonance to generate a
magneto quasi-static field throughout the body. As demon-
strated in Fig. 10, the current induced by the signal flowing
through the transmitter’s coil (yellow dashed lines) generates
a magnetic field (red dashed lines). When the foot and hand
touch the ground and signal electrode at the same time,
respectively, the conductive line and human body create a
communication channel by forming an effective loop (green
dashed lines) [191]. Notice that the communication channel
disappears if foot or hand is detached from the electrodes. That
is, the communication channel is connected and disconnected
by closing and opening the effective loop, respectively. Similar
to CC, MC can reach relatively long distances („ 120 cm).
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Fig. 10: Illustration of magnetic coupling based HBC.

TABLE VII: Analytical and Numerical HBC channel models.
Ref. Year Coup. Frequency Pathloss Validation Methods

[192] 2009 GC 1 KHz-1MHz Linear SIM: Finite element Mesh
EXP: In-vivo measure.

[193] 2012 CC 1 KHz-100 MHz Linear EXP: Measure. up to 1.3 meters.

A
na

ly
tic

[194] 2016 GC <5 MHz Linear SIM: FDTD simulations
EXP: Liquid Muscle Tissue Phantom

[130] 2009 CC 1 MHz-100 MHz - EXP: In-vivo measure. (VNA)
[131] 2011 CC 1 MHz-100 MHz Linear* EXP: In-vivo measure. (VNA)
[132] 2012 GC 10 kHz–5 MHz Linear* EXP: In-vivo measure. (SG+OS)
[133] 2014 GC 1 KHz-100 MHz Linear EXP: In-vivo measure. (SG+OS)
[134] 2017 CC 1-40 MHz Linear* EXP: In-vivo measure. (VNA w. Balun)

FE
M

[135] 2018 GC <1 MHz Linear* EXP: In-vivo measure. (SG+OS w. Balun)
[143] 2003
[144] 2004
[145] 2006
[146] 2007

10 MHz - EXP: Tissue-equivalent solid phantom

[147] 2009

GC
with

single
elect.
pair 10-100 MHz Linear EXP: In-vivo measure. (SG+OS)

N
um

er
ic

FD
TD

VNA: Vector Network Analyzer, SG: Signal generator, OS: Oscilloscope, *: Freq. dep. pathloss

B. HBC Channel Models

An accurate channel model is essential for developing
effective HBC systems. Nonetheless, this is a non-trivial task
as HBC channels are affected by many factors such as envi-
ronment, distance between transceivers, electrode orientation
and locations on the body, variable contact impedance of
different electrode types and their specifications, and backward
loss that dynamically changes with various body postures and
movements.

1) Analytical Models: As discussed in Section III-B and
Section III-C, Maxwell’s equations can explain the electric
field within and around the body through a set of complex
electric field equations. Therefore, analytical models have been
developed to investigate the electric field based on electromag-
netic theories [147], [192]–[194]. In [193], authors consider
three main electric field components of CC-HBC; the quasi-
static near field, induction-field radiation, and the surface wave
field. The theoretical analysis is validated by measurements
up to frequency of 100 MHz and channel distance of 1.3 m.
A linear pathloss model (Model A in (1)) is also presented
and compared with FDTD based linear model given in [147].
In [194], authors exploit multilayered ellipsoidal geometry to
present a unified analytical GC-HBC channel model that can
be used for any part of the body. The model is validated
by FDTD simulations and phantom measurements. Similar to
other works, pathloss has been shown to increase linearly with
frequency and distance.

Wegmueller et. al. investigate GC-HBC by using finite
element method to understand the impacts of distance, tissue
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TABLE VIII: Circuit models.
Circuit Models

Ref. Circuit Model Frequency CM Equipment P/T Model CL [cm] Electrode Specs. P/T

[191] Single-lumped RC model 100 kHz–20 MHz MC SA, SG A+CBP - 10.5 ˆ 7.5 cm
36.3 ˆ 36.3 cm S

[195] RC type high-pass filter 100 kHz–150 MHz CC CCa, O, SA A+T+CBP 10, 40, 120 d=1.5 cm RH

[196] Four-terminal circuit model 100 kHz–5 MHz GC O, SG CFP+S+F+M+B+
BM +EEI+ESI 20, 30, 40 10 ˆ 10 mm A, L, H, T

[197] Lossy transmission line
without \emph{L}

*10–200 kHz
1–100 MHz GC*, CC BA, O, SA, SG A+CBP 15–150 Copper electrodes with

AgCl electrolyte A

[198] Longitudinal impedance model 200 kHz–10 MHz GC BA, VNA S+F+M+CB - 1 ˆ 1 cm S

[199] Single-lumped RC blocks 1 MHz–100 MHz CC CCa, VNA CFP+S+CBP 20, 30, 140 4-cm diameter circular S

[200] Mixed distributed-lumped
element model 1 MHz–100 MHz CC LCR meter,

VNA, CCa
T+ESI+EEI+TBI +

CBP+CC+BA 15, 30, 140 Copper electrodes A, C, T

[201] 3D circuit model 100 kHz–1 MHz GC O, SG S+F+M+B+
C+ESI+S-F 0.2–1 10 ˆ 10 ˆ 1 mm,

0.5 ˆ 0.5 cm A

[202]
5-tissue-layer circuit model

(serial and longitudinal
admittances in parallel)

1 MHz–40 MHz CC BA, VNA CFP+S+F+M+B+
BM+CBP+ESI 15, 30, 150 2 ˆ 2 cm,

4 ˆ 4 cm A, L, T

[203] A lumped bio-physical
model 10 kHz–1 MHz CC O, SG SG+E+S+P 20–25 Copper electrode A, W

CM: Coupling Method, P: Phantom, T: Tissue, CL: Channel Length, d: diameter, A: Arm, RH: Right-Hand,
L: Leg, H: Head, T: Torso, C: Chest, W: Wrist, S: Skin, F: Fat, M: Muscle, B: Bone, BM: Bone Marrow, C: Cell
BA: Balun, CCa: Coaxial Cable, O: Oscilloscope. P:Probe, SA: Spectrum Analyzer, SG: Signal Generator, VNA: Vector Network AnalyzerLegend CC: Cap. Coupling, GC: Galv. Coupling, MC: Mag. Coupling, EEI: Electrode-Electrolyte Interface, ESI: Electrode-Skin Interface,
TBI: Transceivers-Body Interference, CFP: Conductive Forward Path, CBP: Capacitive Backward Path

types, electrode positions, and joints on signal attenuation
between 1 kHz and 1 MHz [192]. The developed analytical
models were compared with numerical simulations and in-
vivo clinical trials. The results showed that a 5 cm increase in
distance yields 6-9 dB more path loss while joints may put an
additional 8 dB loss proportional to their size. Although re-
ceiver electrode size had a negligible effect, a larger transmitter
size yielded a lower attenuation. The resistance of different
tissues was also shown to have varying influence on the path
loss.

2) Numerical Models: Among numerical tools presented
Section III-C, there are two common methods used to simulate
the signal propagation on HBC channels: FEM [130]–[135]
and FDTD [143]–[147]. We refer interested readers to Section
III-C for technical details of FEM and FDTD.

FEM: In [130], a circuit-coupled FEM method is used to
explore CC-HBC. The FEM simulations on multilayer human
forearm model is validated by clinical trials by using VNAs
between 1-100 MHz. Results showed that increasing path loss
by distance is mainly caused by the increasing length of the
parasitic capacitor return path. The work in [130] is extended
in [131] by dividing the surrounding environment into three
regions: near-field region, transmission region, and far-field
region. A whole body FEM simulations are conducted for GC-
HBC in [132] where frequency-dependent signal attenuation
has exhibits different slopes in low and high frequency ranges.
Moreover, the impact of distance on the frequency-dependent
signal attenuation was also observed to become more signifi-
cant as the frequency increases. A GC-HBC is also considered
in [133] where the influence of frequency, channel length,
and inter-electrode distance have been analyzed. Specifically,
authors have shown that attenuation increases as far as 20
dB for an increment of 5 cm and concluded that GC is
limited to short distances. In [134], CC-HBC is investigated
with different ground electrode heights, separation distances,
and dimensions. During our initial investigations using FEM
simulators, we observe that path loss exponentially decays

with increasing frequency while its relation with distance is
linear. We refer interested readers to [204] for a deeper insight
into the FEM based analysis and estimation of the GC-HBC
channels.

Furthermore, the effects of different shapes and relative
angles of the ground electrodes are investigated for the first
time. The results have shown that a shape with more sides
yields a smaller path loss. Interestingly, authors conclude their
simulation and experimental results with a path loss model
which depends on air and ground coupling capacitances and
electrode angles. In [135], authors provide a computational
GC-HBC analysis covering some issues that was not fully
explained before, including the modeling of skin-electrode
impedance, the differences associated with the use of constant
voltage, current excitation modes, the influence of the sub-
ject’s bioelectric properties on both distance and frequency
dependent attenuation.

FDTD: In [143]–[146], authors employs FDTD method
for GC-HBC where a single pair of electrode is considered
such that signal and ground electrodes act as transmitter and
receiver, respectively. The simulation results are validated with
measurements on tissue-equivalent solid phantom. [147]

3) Circuit Models: Previously discussed numerical models
have two main drawbacks: a long simulation time and accu-
racy limited to low-frequency approximations of Maxwell’s
equations. Alternatively, circuit models offer shorter running
times and accuracy for a wide range of frequencies. The
circuit models are established on simple transfer functions
that mathematically characterize the signal propagation along
a transmission path on/in the human body [191], [195]–[203].

By using the frequency-dependent dielectric properties of
different tissue types, a simple phantom can be modeled with
resistance and capacitance, representing the dissipation loss
and charge holding ability of tissues, respectively. Since the
human body parts are small compared to signal wavelengths
under 100 MHz, the lumped-element model is capable of
analyzing the signal behavior [202]. Accordingly, a variety of
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approaches have been developed such as the use of a single RC
model [191], longitudinal impedance model [198], 3D circuit
model [201], and 5-tissue-layer circuit model [202], etc. Table
VIII compare the circuit models based on frequency range,
coupling method, equipment used for measurement, employed
phantom/tissue model and types, propagation distance, and
electrode specifications. The range of frequencies of interest
and the coupling method are the main considerations to decide
on the model that fits best the channel. To date, there is no
standardized circuit model that characterizes the full human
body over the entire HBC frequency range. This is mainly
because of deteriorating accuracy level when generalization
of a circuit model is not capable of accounting for various
practical issues, which are discussed in the sequel.

The accuracy of the circuit models can be affected by
several factors such as conductive forward body path (CFP);
capacitive backward path (CBP); propagation distance; dielec-
tric properties of tissue layers; the signal radiation leaked
to the air and absorbed by body tissues; and electrode-
skin contact/interface impedance. These effects are generally
classified as intrinsic and extrinsic. The accuracy of a circuit
models lies within the ability to account for intrinsic and
extrinsic effects in the transfer functions. The intrinsic effects
can be considered as static as they merely depend on channel
distance and tissue properties along the propagation path rather
than external/environmental conditions. On the contrary, the
extrinsic effects are caused by the return and parasitic paths, as
shown in Fig. 8 and Fig 9. Furthermore, the interface between
electrodes and skin is a significant part of the extrinsic channel
as well as skin conditions such as age and moisture level of
the skin [202]. Based on above discussion, one can tell that
the intrinsic and extrinsic effects are more related to CFP and
CBP, respectively. Indeed, one common observation on the
presented models by references tabulated in Table VIII is that
the accuracy decreases at higher frequency ranges, especially
above 70 MHz.

4) Empirical Models: A common shortcoming of the pre-
vious channel models is that they cannot capture the impacts
of environmental effects on the channel model. As a remedy,
empirical models can provide a deeper insight into the channel
behaviors under real circumstances. Fig. 8-Fig. 10 depict
different measurement setup by using various equipment such
as signal generator (SG), vector network analyzer (VNA),
and spectrum analyzer (SA). However, recent studies have re-
vealed that empirical studies reported significantly inconsistent
channel gains due to different measurement configurations in
terms of grounding, load resistance, the effect of cables and
connections, and type of measurement devices [191], [195],
[205]–[207], [215], [216]. We list the empirical studies in
terms of these configurations in Table IX and discuss details
in what follows.

a) Grounding Effects: Using earth-grounded equipment
leads to erroneous channel gain measurements since there
is a cabled path between the measurement devices’ internal
grounds. In such a case, the true channel gain is overestimated
as the measurement instruments’ ground plane creates a larger
path loss than the actual return path. In order to avoid such
optimistic measurements, TX and RX ports have often been

isolated from the common internal ground by using balanced-
to-unbalanced (balun) components. In [203], the channel char-
acteristic without baluns shows a flat band response with a loss
of around 20 dB over the frequency range of 100 KHz–100
MHz. On the other hand, introducing baluns show a band-pass
characteristic with a loss of „80 dB around 100 KHz and the
minimum loss of „20 dB around 35 MHz. However, the use
of baluns cause two types of parasitic paths [216]:

‚ As shown in Fig. 9, parasitic paths goes through in-
terwinding capacitance (Ci!) that occur between balun
terminals.

‚ The differential signal influence the HBC channel by
forming a return path through the surrounding envi-
ronment. Thus, the asymmetrical capacitance between
the ground and balun terminals should be the same in
the whole frequency range. In this way, only parasitic
paths from instrument’s ground to the earth’s ground will
remain, as shown in Fig. 8 and 9.

Nonetheless, the use of baluns is not a complete solution
to the grounding effects. In [205], it has been shown that
inclusion of any additional ground plane area overestimates
the channel gain by up to 33.6 dB, whether it is isolated by
via a balun or not. Therefore, recent studies considered battery-
powered transceivers/instruments for a more accurate channel
characterization [197], [200], [215].

b) Load Resistance and Instrument Effects: Another crit-
ical concern on the experimental configuration is the input
resistance of measurement instruments and transceivers. In
the literature, measurement campaigns typically used 50 ⌦

and 1 M⌦ load resistances [217]. Especially in the case
of GC-HBC, the impedance observed before and after the
instruments is the same as that presented by the human body
and electrode interface, which is independent of the frequency
[133]. Therefore, 50 ⌦ may not be the best option for channel
characterization. A comparison between 50 ⌦ and 1 M⌦ load
resistances shows that 1 M⌦ yields a 25 dB more channel
gain at 10 KHz, which reduces to 15 dB at 1 MHz [215]. It
is also worth noting that VNAs, SGs, SAs, and oscilloscopes
have different characteristics and thus different impacts on the
measurements. In light of the above discussions, achieving
optimum coupling is possible only if any impedance mismatch
is avoided by taking the aforementioned issues into account.

c) Cable Effects: The electrical cables are usually prone
to attenuation and radiation at higher frequencies, which limits
the range of study of the HBC channels. Therefore, their effect
should be minimized as much as possible by using correct
matching and minimal length. In the literature, several studies
explored the cable effects [195], [199], [205]–[208], [211],
[212], [215]. Various cable types are compared over 10 kHz
to 100 MHz frequency range in [215], where the performance
of computational and experimental results match well up to 1
MHz, then a difference about 10 dB observed starting from 4
MHz.

Excluding [207], the measurement campaigns carried out
in references listed in Table IX with a limited number of
participants, even some of them consider only a single human
subject. Since this inherently yield statistically insignificant
results [206], [208]. To the best of authors’ knowledge, a
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TABLE IX: Empirical models.
Empirical Models

Ref. VNA SA SG O B Cable
Effects

Battery
Powered

Ground
Plane

#
People

Env.
Effects

Body
Mov. Electrode CM Frequency Channel

Length
[195] N Y - Y N Y Y 24–60 cm2 1 Y Y d=1.5 cm CC 100 kHz–150 MHz 10, 40, 120 cm
[205] Y Y N N Y Y Y 4 ˆ 4 ˆ 3 m 1 – N 30 ˆ 30 mm2 CC 20–150 MHz 20 cm

[206] Y N N N Y/N Y Y/N 2.4 ˆ 2.4 ˆ 3 m 11 Y Y 2 ˆ 2 cm2 GC – 4, 16, 28,
36, 120 cm

[191] N Y Y N N - N 36.5 ˆ 36.5 cm 1 N Y 7.5 ˆ 10.5 cm2 MC § 10 MHz
[207] N N Y Y N Y N 7ˆ4 cm2 94 – N 2 ˆ 2 cm2 CC § 100 MHz 1.5 m

[208] Y N N N Y Y – – 4 Y Y 3 ˆ 3 cm2

6 ˆ 8 cm2 300 kHz–15 MHz 30, 90, 150 cm

[199] Y N - - Y Y N – 1 – N 2 ˆ 2 cm2 CC 1–100 MHz 5†d†150 cm

[209] Y N Y - N N N – 1 – N 2 ˆ 5 cm2

2 ˆ 10 cm2 1 MHz–2.5 GHz 0.7†d†180 cm

[210] Y N Y N N – N – 1 – Y d=1 cm, 3cm CC 200–600 MHz 20†d†155 cm
[211] Y N N N Y N N – 1 N N 2 ˆ 2 cm2 10–100 MHz 15 cm

[212] Y N N Y Y Y N – 1 N N 4 ˆ 5 cm2

4 ˆ 10 cm2 CC 1–100 MHz 20 cm

[213] N N N N N Y Y – 1 Y Y 4 ˆ 4 cm2 100 kHz–60 MHz 11 cm

[192] N N N N N N Y – 2 N N 28 ˆ 20 cm2

30 ˆ 22 mm2 GC 10 kHz–1 MHz 5 and 7 cm

[214] N Y Y N N N Y – 1 Y Y 4 ˆ 4 cm2 CC – –

Legend: VNA: Vector Network Analyzer, SA: Spectrum Analyzer, SG: Signal Generator, O: Oscilloscope, B: Balun
Y:Yes, N:No, CM: Coupling Method, CC: Cap. Coupling, GC: Galv. Coupling, MG: Magnetive Coupling

holistic cross-sectional and longitudinal study is yet to be
performed to reach statistically meaningful inferences on the
channel characteristics.

C. Variable Electrode-Skin Impedance (ESI)
The electrode-skin (contact) impedance (ESI) between the

human body and the signal electrode has a considerable
impact on the overall path loss. The contact impedance is
determined by the electrode-electrolyte interface (EEI) and
the skin-surface impedance (SSI) track. While the EEI is
characterized by electrode types (wet or dry) and specifications
(size, shape, metal), the SSI varies with operating frequency,
skin conditions, and body motions. Therefore, the channel
gains change with the contact impedance variations, which
characterize the shadowing effects on HBC channels. In this
subsection, we first introduce the circuit representation of ESI
components and then discuss the impacts of electrode types
(wet or dry) and specifications (size, shape, metal) on the
contact impedance.

1) Impacts of Electrode Types and Specifications: Similar
to the role of antennas in the NB/UWB systems, electrodes
have a major impact on the overall channel path loss as
they are the main components that interface the human body
and transceiver. Electrodes generally do not deliver the same
performance as they come in a variety of designs, structures,
and materials, etc. In what follows, we first present electrode
types and then discuss various specifications and their effects
on the contact impedance.

a) Electrode Types: Electrodes are broadly classified as
wet and dry electrodes based on whether some chemical gels
are used to increase the conductivity. The wet electrodes are
further sorted into two types: electrolyte and pre-gelled elec-
trodes. The latter offers a good fit and high conductivity and
has a wide-spread use thanks to their disposable and low-cost
nature [218]. However, the gel conductivity would degrade
over prolonged use and/or through sweat/grease accumulation.
This inherently deteriorates the overall transducer performance
and limits the wet electrodes to single and short-term clinical
use [219].

On the other hand, dry electrodes have a large contact
impedance as it is a metal directly attached to the skin surface.
The lack of a conductive gel causes two main problems:
Firstly, the air generally traps between the electrode and
skin, which creates an extra dielectric layer and increases
the overall impedance considerably. Secondly, the electrode
may not attach well to a dry skin surface, which yields
motion artifacts and high contact impedance, as mentioned
in the previous subsection. To overcome these drawbacks, dry
electrodes are recently designed by using soft substrates, such
as textile electrodes [220], tattoo electrodes [221], and skin-
like electrodes [222] are popular examples of soft-electrodes.
Since IoB nodes are generally used for long-term applications,
dry electrodes are more suitable in terms of a longer lifetime
and reduced discomfort, which are vital attributes for com-
mercialization efforts.

b) Electrode Specifications: Material, size, and geometry
of the electrodes are essential for the contact impedance’s se-
lectivity and sensitivity. In order to avoid irritation/discomfort
to user skin and eliminate the performance deterioration over
long-term use, electrode material should be biocompatibility
and strike an excellent electrochemical balance at the ESI. Sil-
ver/silver chloride (Ag/AgCl) electrodes are widely accepted
since they have stable chemical properties, low compensation
voltage, low intrinsic noise, and low ESI [223]. Since Ag/AgCl
electrodes have a simple and mature fabrication process, they
also have a low-cost [219]. In addition to the above Ag/AgCl
electrode advantages, gold electrodes offer a better biocom-
patibility conductivity at a higher cost. Furthermore, metallic
and carbon-based nanomaterials are also used in electrodes
thanks to their advantages of having a large surface, higher
conductivity, and better connectivity. For example, AgNW
based metal nanoparticle and nanowire electrodes are shown
to deliver similar/superior performance with/than Ag/AgCl
electrodes in resting/moving states [224].

The electrode size and geometry determine effective contact
area, sensitivity, depth, and intensity of the applied electric
field, and signal-to-noise ratio [225]. Electrodes typically
come in rectangular, circular, spiral, ring, and interdigital
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shapes. While circular and rectangular electrodes are com-
monly macro-block electrodes, others are often microelec-
trodes. Along with the electrode size, inter-electrode spacing
also has a considerable impact on the penetration depth and
electric field distribution [226].

2) Impedance Matching: Throughout the previous subsec-
tions, our discussion concludes that modeling ESI is not trivial
since it is affected by many factors, which inherently yields
design uncertainty and degrades the connection reliability.
The variable contact impedance also requires an extra margin
at both the transmitter and receiver side, which results in
an additional power budget. These necessitate impedance
compensation techniques to maximize the power transfer at
the electrode-to-skin interface [227], which can be done via
matching networks [228]. At the cost of extra power margin,
a commonly adopted way is increasing and decreasing the
input and output impedance of the receiver and transceiver,
respectively [229]. A power-efficient alternative is adaptive
and automatic receiver mode selection based on an impedance
sensing circuit [230]. In [231], authors develop low and high
modes to mitigate the variable contact impedance. The non-
contact cases have been considered in [232], [233], where
an inductor is employed to compensate for the electrode-skin
interface capacitance in a dynamic fashion.

D. Summary and Insights

Unlike the NB/UWB channels’ coexistence and interference
problems, the HBC is an alternative solution with the virtues
of ultra low power operation, sufficient throughput for most of
the IoB applications, and enhanced physical layer security due
to the low signal leakage. In this section, we first outline three
main coupling methods: capacitive, galvanic, and magnetic.
In the realm of HBC, CC-HBC and GC-HBC are mostly pre-
ferred due to their practical use. While GC-HBC confines both
forward and the backward path to the human body, the CC-
HBC completes the backward path through the environment,
the earth’s ground, and electrodes’ ground plates. For this
reason, the CC-HBC is more sensitive to the environmental
changes than the GC-HBC.

The HBC channels are characterized by analytical, nu-
merical, circuit, and empirical models. Analytical models
are important to gain a deep insight into the propagation
mechanism by using a set of complex Maxwell’s equations.
For the sake of analytical tractability, analytical models are
limited to simple cases. Therefore, analytical models found the
basis of numerical methods, which run heavy computational
tools on numerical body phantoms presented in Section III-B.
The FEM is the most common numerical technique to char-
acterize the HBC channels. Numerical methods have a long
simulation time and limited accuracy at low frequencies. Thus,
circuit models are also developed based on an electric circuit
representation of the human body’s dielectric properties. A
common shortcoming of these approaches is that they cannot
capture the impacts of environmental effects on the channel
model. As a remedy, empirical models can provide more
realistic channel measurements. Nonetheless, the campaign
measurements must be set very carefully as many factors

affect the channel gain’s true estimate, including grounding
strategy, load resistance, instrumentation device specifications,
and cable effects. Lastly, the variable contact impedance yields
design uncertainty and degrades the connection reliability. In
order to avoid its negative impact on the overall HBC system
performance, the contact impedance elements (e.g., ESI and
SSI) should be accurately modeled and dynamically matched
for the sake of improved performance.

VI. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

As an imminent extension to the IoT domain, IoB can open
up significant opportunities, however, it is subject to technical
challenges, security concerns, and risks. In this survey, we pre-
sented the IoB concept, specified requirements, and introduced
related communications and networking standards. Then, we
narrowed our scope to the characterization of channel features
in-on-and-around the human body. A systematic survey of
channel modeling issues is presented for various link types
on NB, UWB, and HBC channels. In what follows, we
bring prospective research directions to the interested readers’
attention.

A. Unified Channel Models
In Section IV and Section V, it has been clearly shown

that reported channel attenuation statistics significantly differs
from one article to another. This is mainly due to the enormous
diversity of IoB communications in terms of channel length,
operating frequency, propagation modes, a myriad combi-
nation of node locations and resulting link configurations,
surrounding environment, hardware specifications, simulation
methods, phantom types, and measurement set up. There is
a dire need to have a unified channel model database which
provides key channel attributes based on frequency, distance,
node locations, propagation mode, and surrounding environ-
ment. In this way, researchers and engineers can develop a
more accurate system design that takes into consideration the
impact of the hardware specifications (antenna matching and
radiation, contact impedance of electrode, grounding effects,
etc.). Although NB and UWB channel modeling issues have
been studied more thoroughly, HBC channel modeling is
relatively less explored. This is also the case for channel
models provided by IEEE 802.15.6 [149] where HBC channels
are briefly mentioned without getting into the technical details.
Considering the distinct advantages offered by the HBC and
the fact that it is less investigated, we see a window of
opportunity for impactful contribution in this area.

B. Channel Estimation Techniques
Channel state information (CSI) is one of the most crit-

ical components to have efficient communication systems
consisting of equalizers, demodulators, and decoders. The
CSI can be categorized as instant and statistical. While the
former describes short-term channel response to optimize the
performance by adapting the transmission scheme, the latter
provides a long-term description for path loss, shadowing,
fading distribution, prorogation mode, etc. In practice, the
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statistical CSI is used along with the instant CSI to represent
a communication channel. Although CSI acquisition is a
challenging task for fast fading channels, this is generally not
the case for IoB nodes due to the limited speed of the human
mobility.

One way for channel estimation is estimating the parameters
of the statistical CSI models, i.e., estimating the parameters of
the combined path-loss and shadowing models or estimating
the shape, scale, and skewness parameters of the underlying
fading distribution [234]. Another popular approach is peri-
odically sending and analyzing pilot or training sequences
which are known by both transmitter and receiver [235]. The
accuracy of pilot-aided estimation can be further improved
by iterative channel estimation by using the soft information
inferred from the data symbols [236]. While the parameter
estimation approach is suitable to update parameters of the
statistical CSI, the pilot-aided estimation is more suitable to
capture time-variant SOCS metrics. Recently, deep learning
has been recognized as a powerful tool to improve overall
channel estimation performance in comparison with the above
traditional methods [237], [238]. Since the IoB nodes are not
expected to have a high computational power, online learning
approaches should be supported by offline training methods.
An alternative approach would be striking a good balance
between model based and data-driven learning based channel
characterization.

C. Channel Aware Cross-Layer Optimization
Cross-layer network optimization is a key enabler of run-

ning a wide variety of IoB applications on limited network
resources, some of which are already in extensive use of other
devices. As outlined in Section I-B, IoB applications have
diverse QoS demands in terms of reliability, latency, energy
efficiency, and data rate. Therefore, cross-layer optimization is
a daunting challenge because of the human-body driven chal-
lenges discussed above and uncontrollable interference caused
by the technologies coexisting on the same bands. The first
and foremost prerequisite for an optimal cross-layer design
is acquisition of accurate and timely channel estimates based
on which transmission scheme can control power, manage in-
terference, and adapt necessary coding/modulation techniques
[239]. The CSI is also necessary to have an adaptive design for
two critical higher layer functions: 1) MAC to allow various
IoB nodes to operate on the same band, and 2) Transmission
control protocol to avoid congestion, sustain connectivity, and
provision a reliable communication between the IoB node
pairs. Body mobility and postures have already been shown
to have substantial impacts on the key SOCS metrics such
as delay spread, power delay profile, level crossing rate, and
average fade duration. To this end, we believe it is necessary
to adapt MAC layer (e.g.,packet length, frame structure, power
control, channel estimation intervals, etc.) to such changes.

D. Energy Self-Sustainability & Network Lifetime
IoB nodes are naturally designed as ultra-low power and

low-cost devices with a limited battery capacity due to their
small-form factor. However, they are still required to have

a long operational time since either they are not reachable
to charge (e.g., embedded or implanted IoB devices) or
for the sake of user satisfaction (e.g., body worn devices).
Therefore, energy harvesting is a key technology to design
energy self-sustaining IoB devices by scavenging renewable
energy sources such as thermoelectric energy from body heat,
and kinetic energy from body motions. It is worth noting
that a proper design is necessary to strike a good balance
between power consumption and system performance based
on QoS demands of underlying IoB application. In order to
maximize the overall network lifetime, harvested energy must
be used economically by means of energy efficient cross-layer
approaches [240], which still depends on accurate channel
estimation. There are two main factors contributing to the
power consumption in IoB nodes:

Communication and signal processing circuitry is the most
power-hungry part of the IoB devices. In addition to design-
ing power-efficient circuit designs, energy-aware transmission
strategies are of utmost importance, such as opportunistic
transmission scheduling and lazy packet scheduling. As signal
sampling and processing operations run more frequently than
the signal transmission in the background, compressed sens-
ing can significantly save energy in many IoB applications.
Another major factor contributing to power consumption is
the MAC protocol, which scales up the power consumed by
communication and signal processing modules. Therefore, a
power-wise MAC protocol should consider energy-efficient
measures such as sleeping strategy for nodes exchanging data
intermittently. The MAC should also minimize the number
of retransmissions due to the collisions caused by interference
received from nearby coexisting nodes at the same band. Con-
sidering the fact that all these approaches counts on a precise
CSI acquisition, it is obvious that channel characterization is
critical to realize energy-efficient transmission and medium
access schemes for energy self-sufficient IoB networks.

E. Opportunities in Millimeter Wave Band
Thanks to its abundant bandwidth availability (3-300 GHz),

millimeter Wave (mmWave) band has been considered to
overcome spectrum scarcity of 5GB cellular networks, in both
access and backhaul link levels. Even if exiting standards
do not recognize mmWave as a component of PHY layer,
it has been has recently received substantial attention to be
used in BANs [91]. Despite of its high bandwidth, mmWave
band suffers from high propagation loss, need for directivity,
and susceptibility to blockage, which makes it more suitable
for LoS communication. Therefore, it could be a good-fit for
on-body and off-body links rather than the implant in-body
communications [241]. Since mmWave is expected to be well
integrated in future wireless networks, we believe mmWave
band can open up ample opportunity for IoB applications.
However, unlike the PHY techniques surveyed in this paper,
there is no sufficient works on characterizing the mmWave
channels on and around the human body.

F. Privacy and Security
Medical IoB applications necessitates a high level of secu-

rity, confidentiality, and privacy [242]. IoB devices operating
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on NB and UWB channels are particularly susceptible to
adversary nodes’ capabilities of altering original data. Since
these bands are already over-crowded by other communication
devices, highly radiative and generally omni-directional nature
of the NB and UWB communications inadvertently permits an
eavesdropper to intercept the sensitive information. Accord-
ingly, the confidentiality and privacy of transmitted data must
be carefully guarded against the eavesdropping and overheard.
Unfortunately, fulfilling these goals is a non-trivial task given
the limited energy, memory, and computational power of IoB
nodes.

Thanks to its low radiation footprint, HBC is inherently
a viable alternative with its inherent physical layer security
qualities. Since both forward and backward paths are confined
within the body, the GC-HBC has a limited signal leakage
compared to the CC-HBC technique. To further confine sig-
nals within the body, electro-quasistatic HBC (eQs-HBC) has
recently proposed as a carrier-less (broadband) transmission
[243]. Thereby, eQs-HBC creates a covert communication
channel where it is extremely difficult for a nearby eaves-
dropper to intercept critical private data. The nominal work of
Das et. al. reveals that eQs leakage is detectable up to <0.15
m, whereas the human body alone leaks only up to „0.01
m [244]. Compared to >5 m detection range for on-body NB
and UWB communication, this practically suggests that the
adversary needs to be in direct physical contact with or almost
touching the body to obtain any information.
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