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Abstract
Influenza viruses, respiratory syncytial virus (RSV), and SARS-COV2 are among the most dangerous respiratory viruses. 
Zinc is one of the essential micronutrients and is very important in the immune system. The aim of this narrative review is 
to review the most interesting findings about the importance of zinc in the anti-viral immune response in the respiratory tract 
and defense against influenza, RSV, and SARS-COV2 infections. The most interesting findings on the role of zinc in regu-
lating immunity in the respiratory tract and the relationship between zinc and acute respiratory distress syndrome (ARDS) 
are reviewed, as well. Besides, current findings regarding the relationship between zinc and the effectiveness of respiratory 
viruses’ vaccines are reviewed. The results of reviewed studies have shown that zinc and some zinc-dependent proteins are 
involved in anti-viral defense and immune regulation in the respiratory tract. It seems that zinc can reduce the viral titer 
following influenza infection. Zinc may reduce RSV burden in the lungs. Zinc can be effective in reducing the duration of 
viral pneumonia symptoms. Zinc may enhance the effectiveness of hydroxychloroquine in reducing mortality rate in COVID-
19 patients. Besides, zinc has a positive effect in preventing ARDS and ventilator-induced lung damage. The relationship 
between zinc levels and the effectiveness of respiratory viruses’ vaccines, especially influenza vaccines, is still unclear, and 
the findings are somewhat contradictory. In conclusion, zinc has anti-viral properties and is important in defending against 
respiratory viral infections and regulating the immune response in the respiratory tract.
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Introduction

Human respiratory viral infections can be considered a major 
public health problem. High costs are incurred in control-
ling respiratory viruses’ epidemics. For example, influenza 
viruses cost the US healthcare system about $87 billion per 

year [1]. Influenza, respiratory syncytial virus (RSV), and 
the emerging SARS-COV2 virus are among the most impor-
tant respiratory viruses that can cause severe respiratory 
infections that may be fatal. Although there is limited statis-
tical information, published data suggest that more attention 
should be paid to the control of respiratory viral infections. 
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It is estimated that in 2018, the influenza viruses caused 
the deaths of approximately 34,800 children under the age 
of 5 due to acute lower respiratory infection globally [2]. It 
has been reported in 2015 that RSV caused approximately 
59,600 deaths in children under the age of 5 globally [3]; as 
well as, it is estimated that this number is about 14,000 in the 
elderly over 65 years [4]. According to a WHO report, the 
COVID-19 pandemic has infected over 174.4 million people 
worldwide, and the number of deaths had totaled more than 
3.7 million as of June 10, 2021. Investigating the importance 
of vitamins and trace elements in diseases of the respiratory 
system is one of the most interesting research areas. Among 
the trace elements, zinc has attracted a lot of attention. Zinc 
is a vital microelement that is essential for a variety of fun-
damental biological processes due to its function as a tran-
sition metal, cofactor, structural component, and signaling 
molecule [5]. Zinc is an essential trace element, and serum 
levels between 90.1 and 98.7 µg/l of zinc are considered 
optimal serum levels [6]. It is estimated that 17 to 20% of the 
world’s population may be zinc-deficient [7]. Zinc seems to 
be very important in anti-viral defense and immune regula-
tion in the respiratory tract. A meta-analysis of 13 studies 
in China revealed that children with recurrent respiratory 
tract infection had low zinc levels [8]. Some meta-analysis 
and systematic reviews results showed that zinc could be 
helpful in decreasing the prevalence and incidence of pneu-
monia in children [9], reducing mortality rate in adults with 
severe pneumonia [10], and reducing common cold duration 
in adults [11, 12]. Thus, adequate dietary intake of this trace 
element may be essential for preventing and more effective 
treatment of respiratory infections.

Zinc has significant anti-viral properties. Zinc anti-viral 
effects appear to be virus-specific. Zinc can affect a wide 
range of viruses. For example, zinc has an inhibitory effect 
on viral polyprotein cleavage in encephalomyocarditis virus. 
Zinc inhibits viral RNA polymerase and replication in hepa-
titis C virus. Zinc can inhibit viral DNA polymerase in her-
pes simplex virus. In addition, zinc can inhibit reverse tran-
scriptase in HIV. Zinc also has interesting anti-viral effects 
on respiratory viruses. For example, it can inhibit viral poly-
merase and polyprotein cleavage in rhinoviruses. The inhibi-
tory effect of zinc on SARS-coronavirus (SARS-CoV) rep-
lication has also been reported. Zinc may reduce viral titer 
in RSV infection [7, 13]. In addition, some zinc-dependent 
anti-viral proteins, including zinc-finger anti-viral protein 
(ZAP), play an important role in attenuating viral protein 
expression in influenza and restricting SARS-COV2 [14, 
15]. In this article, we review the most interesting findings 
regarding the zinc’s role in the anti-viral immune response 
and immune regulation in the respiratory tract and discuss 
the importance of this trace element in defense against influ-
enza, RSV, and SARS-COV 2. Besides, we review the most 
interesting findings regarding the association of zinc with 

acute respiratory distress syndrome (ARDS). The effect of 
zinc on the effectiveness of vaccination, against respiratory 
viruses, was reviewed, as well.

Method

The present study is a narrative review. Literature search 
was performed in PubMed and Google Scholar. Search 
areas include respiratory viral infections, anti-viral immune 
response in the respiratory tract, the role of zinc in anti-viral 
defense and immune regulation in the respiratory tract, the 
importance of zinc in defense against influenza, RSV and 
SARS-COV2 infections, the relationship between zinc and 
ARDS, and relationship between zinc and the effectiveness 
of respiratory viruses’ vaccines. The number of articles 
founded in the above-mentioned areas was 169. All founded 
articles were used. No inclusion or exclusion criteria were 
applied.

Results and Discussion

Anti‑Viral Response in the Respiratory System

Undoubtedly, reviewing the details of the anti-viral 
immune response in the respiratory tract requires the writ-
ing of a separate review article. However, before begin-
ning the discussion on the importance of zinc in anti-viral 
defense and immune regulation in the respiratory sys-
tem, it is necessary to have a very brief overview of the 
most important events of the anti-viral immune response 
in the respiratory tract. The anti-viral immune response 
in the respiratory tract is divided into innate and adap-
tive immune responses, which work together to eliminate 
the infection. Respiratory viruses are mainly transmitted 
through the inhalation of infectious particles. Respiratory 
viruses enter the epithelial cells of the respiratory tract 
and replicate inside these cells, eventually leading to the 
release of new viral particles and the infection of more 
cells. Respiratory epithelial cells could rapidly detect 
viral pathogen-associated molecular patterns (PAMPs) 
and trigger an immune response via pathogen recognition 
receptors (PRRs) such as NOD-like receptors (NLRs) and 
toll-like receptors (TLRs) [16]. Activation of interferon 
regulatory factors (IRF) and NFKB within respiratory 
epithelial cells leads to the release of type I interferons 
and pro-inflammatory cytokines such as TNFα [16]. IFN-α 
and IFN-β belong to type I interferons. These interferons 
can disrupt the replication of viruses and play an essen-
tial role in anti-viral defense in the respiratory tract [17]. 
Some antimicrobial peptides which are produced by the 
epithelial cells of the respiratory tract also appear to be 
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involved in anti-viral defense. Pro-inflammatory cytokines 
and chemokines such as CXCL8 and CXCL10, which are 
produced by the epithelial cells of the respiratory tract, 
enhance the recruitment of immune cells to the site of 
infection [18]. Neutrophils and macrophages can produce 
significant amounts of ROS, anti-microbial peptides, and 
pro-inflammatory cytokines. In addition to cytolytic activ-
ity, which is very important in anti-viral defense, NK cells 
can produce significant IFN-γ, thereby enhancing the func-
tion of cytotoxic T cells [19, 20]. The adaptive immune 
response begins with the activation of dendritic cells and 
the migration of these cells to the draining lymph nodes. 
Virus-infected epithelial cells play an important role in 
invoking dendritic cells to the infection site and maturating 
them by producing chemokines such as CCL2 and types I 
and III interferons [21, 22].

After migrating to draining lymph nodes, dendritic cells 
can activate naive CD8 + and CD4 + T cells by present-
ing viral antigens through MHC molecules. Activated 
naive T cells can differentiate into various T cells, includ-
ing effector CD8 + and CD4 + T cells [18, 21]. Alveolar 
macrophages and NK cells may act as antigen-presenting 
cells, as well [21]. Effector T cells migrate to the site of 
infection. The secretion of pro-inflammatory cytokines and 
chemokines by virus-infected epithelial cells and innate 
immune cells enhances the invocation of T cells to the 
area of infection [16]. CD8 + T cells can induce apopto-
sis in virus-infected cells and play a key role in anti-viral 
defense in the respiratory tract [23]. Th1 and Th2 are 
among the effector CD4 + T cells that play a crucial role 
in the immune system and anti-viral defense. These cells 
can enhance the function of C8 + T cells and have a stimu-
latory effect on the ability of B lymphocytes to produce 
antibodies [23]. Th1 cells can produce significant amounts 
of cytokines such as IL2 and IFN-γ, thereby enhancing 
the function of NK cells [24]. In fact, a combination of 
innate immunity, antibody production, and cytotoxic func-
tion of TCD8 + cells is involved in anti-viral defense in 
the respiratory tract, and effector CD4 + T cells play an 
indirect but important role in anti-viral defense by leading 
these events. In HIV infection, where T CD4 + cells are 
targeted as the main target, the immune system is signifi-
cantly weakened, indicating the high importance of these 
cells in the immune system [25]. Figure 1 summarizes the 
above-mentioned events.

The critical point is that all these events must occur in a 
proper and regulated manner; otherwise, excessive inflam-
mation can cause tissue damage. Impaired regulation of 
the anti-viral immune response in the airways can lead to 
the sudden production of large amounts of pro-inflamma-
tory cytokines. This event, called a cytokine storm, can be 
very dangerous [26].

Zinc and Immune Response in the Respiratory 
System

Zinc appears to be a key player in anti-viral defense in 
the respiratory tract. The role of zinc in the immune sys-
tem can be divided into three categories, namely catalytic, 
structural, and regulatory functions [27]. Zinc may improve 
host defense by maintaining the structure and function of 
the respiratory epithelium barrier. Disorders in the integ-
rity of respiratory epithelium can promote the viruses’ entry 
[28, 29]. Respiratory tract is constantly exposed to various 
pathogens; therefore, maintaining the structural integrity of 
the epithelium is very important in the respiratory system 
[28]. Zinc depletion in airway epithelial cells disrupted the 
structural proteins, including β-catenin and E-cadherin, 
leading to enhanced leakage across the respiratory epithe-
lial barrier [30]. The expression of ZO-1 and Claudin-1 
which are tight junction proteins is also found to be zinc-
dependent [29]. It seems that zinc deficiency can lead to 
serious changes in lung epithelial barrier function, possibly 
through up-regulation of IFNγ and TNFα, enhancement of 
FasR signaling, and enhancement of apoptosis. In addition, 
apoptosis and para-cellular leakage can be attenuated by zinc 
supplementation [30]. One of the most important aspects 
of anti-viral immune response in the respiratory system is 
that the immune response must be appropriate and regu-
lated. Although the immune response and the inflammatory 
process can eliminate pathogens, excessive inflammation 
can cause tissue damage. Therefore, regulation of inflam-
mation is important, particularly when respiratory cells 
respond to invading pathogens [31]. It seems that zinc plays 
a key role in this regard. Inadequate dietary zinc intake can 
cause Zn deficiency leading to impaired immune function 
[32]. Zinc is involved in the regulation, normal growth, and 
function of immune cells such as monocytes, neutrophils, T 
and B-lymphocytes, dendritic cells, and natural killer (NK) 
cells. Following a respiratory viral infection, these cells are 
recruited to the respiratory tissue. It seems that zinc can 
enhance the proliferation of CD8 + cytotoxic T lymphocytes. 
These cells are crucial in the immune response to respiratory 
viruses [33, 34]. Zinc deficiency may impair Th1 cell func-
tion; impair the production of IL-1, IL-2, IL-4, and IFN-γ; 
shift Th1/Th2 balance to Th2; reduce B cell populations; 
attenuate killing activity of NK cells; and reduce CD8 + T 
cell population [35–38].

Zinc supplementation may eliminate many of the effects 
of zinc deficiency on immune cells. It seems that zinc sup-
plementation can increase the numbers of T lymphocytes in 
older individuals [39]. Moreover, zinc is engaged in the rec-
ognition of MHC I by NK cells, and depletion of Zn affects 
the lytic activity of NK cells [40]. Another study has shown 
that zinc supplementation in individuals with zinc deficiency 
leads to an increase in ratios of CD4 + to CD8 + lymphocytes 
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[41]. Besides, zinc is essential for regulation of the balance 
between the various T cell subdivisions [42, 43]. Experi-
ments in humans demonstrated that decreased zinc con-
tent reduces the development of Th1, and thus, the balance 
between Th1 and Th2 is disturbed. Th1/Th2 imbalance is 
eliminated via zinc supplementation [44]. Zinc deficiency 
reduces the production of antibodies and the number of B 
lymphocytes [34]. Zinc may reduce excessive inflammatory 
response by modulating Treg functions [45]. In Treg devel-
opment, two zinc-dependent molecules of IRF-1 and TGF-
β-induced Smad 2/3 signaling are involved [46]. Zinc sup-
plementation enhanced TGF-β-induced Smad 2/3 signaling 
and dampened IRF-1 activity [47]. Zinc deficiency resulted 
in increased NF-κB expression in the lungs, leading to up-
regulation of target genes, including ICAM-1, TNFα, and 

IL-1β [48]. In addition, it seems that zinc deficiency can 
lead to enhanced production of pro-inflammatory cytokine 
(TNFα, IL-6, CXC L1), enhanced migration of neutrophils, 
and increased production of CXC L1 and IL-23 by mac-
rophages, possibly through NF-κB activation [49]. By inhib-
iting dephosphorylating enzymes, such as protein tyrosine 
phosphatases (PTP), zinc can directly regulate immune sys-
tem activity [50]. PTPs can regulate TCR signaling [51]. It 
seems that inhibiting PTP1B expression may increase the 
expression of CXCL1, CXCL9, and CXCL10 during RSV 
infection [52]. Therefore, PTPs may be important during 
respiratory viral infection. As mentioned in the previous sec-
tion, interferons (IFNs) are inflammatory stimulus and play 
a key role in orchestrating adaptive and innate immunity 
system [52]. In vitro zinc therapy has been shown to increase 

Fig. 1  Anti-viral immune response in the respiratory tract
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the production of IFNα by white blood cells [53]. It is pro-
posed that zinc may stimulate the up-regulation of anti-viral 
enzymes including protein kinase RNA-activated (PKR) and 
latent ribonuclease (RNase L). These enzymes are important 
in type I IFN anti-viral activity [5, 54]. It seems that high 
doses of zinc can inhibit IFN-γ production and lymphocyte 
function [44]. Therefore, zinc may also have immunosup-
pressive effects.

The relationship between Zinc and IFN-λ is also interest-
ing. One study showed that zinc with interfering in IFN-λ 3 
binding to IFNL receptor 1 can act as a specific and potent 
inhibitor of IFN-λ 3 signaling. Strong zinc-mediated inhi-
bition of IFN-λ3-induced CXCL10 expression has also 
been demonstrated in vitro, indicating the biological com-
plexity of zinc [55]. In addition to these, the intracellular 
availability of zinc may play an important role in anti-viral 
activity [56]. Zn transport is principally mediated by two 
major transporters: (1) the zinc transporter (ZnT) or solute 
carrier 30 (SLC30) family and (2) the zinc importer (ZIP), 
Zrt (zinc-regulated transporter)-like, Irt (iron-regulated 
transporter)-like proteins, or solute carrier 39A (SLC39A) 
family [57]. Currently 10 members of the ZnT (ZnT 1–10( 
family and 14 members of the Zip family (ZIP 1–14) have 
been identified [58]. ZnT transporters reduce intracellular 
Zn2+ by efflux of Zn2 + from the cytoplasm to outside the 
cell or influx into cellular organelles, such as lysosome and 
endoplasmic reticulum (ER). ZIP transporters, which carry 
out the opposite role, increase intracellular Zn2+ by influx 
and import of Zn2+ into the cytoplasm from outside the cell 
or cellular organelles [59]. It seems that zinc transporter 
SLC39A8 (Zip8) is abundantly expressed in the lung [60]. 
In lung epithelial cells among the ZnT and ZIP transporter 
genes, only ZIP8 is strongly induced by TNF-α. Thus, Zip8 
is a critical regulator in zinc-mediated cyto-protection and 
plays a role in the survival of lung epithelial cells [61]. 
Besides, Zip8 controls IFN expression by regulating zinc 
release from lysosomes [62]. It seems that Zip8 expression 
in human monocytes can also be up-regulated in response 
to LPS [63]. There seems to be an interesting relationship 
between the NF-kB signaling pathway, and zinc transporters, 
especially ZIP8. It seems that NF-kB activity may be regu-
lated by zinc during innate immune response [48]. Studies 
have shown that zinc plays an important role in regulating 
the activity of the NF-kB signaling pathway, and this regu-
lation may be cell-specific [64, 65]. It seems that zinc can 
induce anti-viral response and inhibit dengue virus replica-
tion in lung epithelial cells and control viral infection by 
activation of NF-KB signaling pathway [66]. Besides, ZIP8 
is a potent negative feedback regulator of NF-kB. ZIP8 can 
negatively regulate immune balance by directing zinc into 
the cytosol, leading to inhibition of IkB kinase (IKKb) [63]. 
An in vivo study showed that zinc supplementation induced 
the expression of Zip8 and ameliorated lung injury [67].

IL-23 and CXCL1 production and airway neutrophil infil-
tration are increased in ZIP8-deficient mice following bacte-
rial infection [68]. ZnT1, ZnT4, and Zip1 transporters are 
expressed in the lung tissue. ZIP1 and ZIP2 are also present 
in lung alveolar macrophages and appear to play an impor-
tant role in the efferocytosis activity of these macrophages 
[69, 70]. Paracrine or autocrine signaling in response to 
type I IFNs (IFN-α/β) can lead to up-regulation of a wide 
array of IFN-stimulated gene (ISG) products which can 
target viruses life cycle [71]. One of the ISG products is 
zinc-finger anti-viral protein (ZAP) encoded by the zinc-
finger CCCH-type, anti-viral 1 (ZC3HAV1) gene. ZAP is 
a member of the poly (ADP-ribose) polymerase (PARP) 
family [71, 72]. One study showed that ZAP and its cofac-
tors TRIM25 and KHNYN are expressed in lung cells. It 
seems that ZAP can bind to CpG dinucleotides regions of 
viral RNA in lung cells [15]. ZAP does not have enzymatic 
activity and exert preventive effects against viral replication 
through interaction with TRIM25 and KHNYN [73]. A20 
protein is another important zinc-finger protein. This protein 
is also known as TNFα-induced protein 3 (TNFAIP3). A20 
is a cytoplasmic protein that is composed of two domains: 
a C-terminus domain built up by a unique seven zinc-finger 
structure with ubiquitin-binding activity and an N-terminus 
ovarian tumor (OTU) domain with deubiquitinase activity 
[74]. The A20 protein is a negative regulator of TLR, reti-
noic acid-inducible gene 1 (RIG-I)-mediated signaling, IRF 
signaling pathway, and NF-KB signaling pathway [75–77]. 
A20 can effectively regulate NF-kB signaling via affecting 
a range of related factors including,TNF receptor-associated 
factor 6 (TRAF6: TRAF pathways), NF-KB essential modu-
lator (NEMO), receptor-interacting protein 1(RIPl), tumor 
necrosis factor receptor 1 (TNFR1), CD40, toll-like recep-
tors (TLRs), NOD-like receptors (NLRs), and the interleu-
kin-1 receptor (IL-1R) [40, 78]. It seems that inhibition 
of A20 expression in respiratory epithelium can enhance 
the protection against influenza infection. In later stages of 
infection, this improved protection may be associated with 
suppression of CCL2 expression and modulation of pulmo-
nary cytotoxic T cell [79]. A study on RSV-infected cells 
showed that down-regulation of A20 can increase apoptosis 
and induce an innate immune response in infected epithelial 
cells [80]. Zinc exerts an inhibitory effect on the activation 
of NF-kB by inducing the A20. It seems that A20 can inhibit 
NF-kB, possibly through inactivation of TRAF6 [81, 82].
Therefore, it seems that zinc can decrease the production 
of pro-inflammatory cytokines such as IL-1β, and TNF-α 
via up-regulation of A20 leading to attenuation of NF-kB 
[32]. It has been suggested that zinc supplements may affect 
NF-kB activity by altering A20 activity [83].

The zinc-dependent metallopeptidase STE24 (ZMP-
STE24) is another zinc-dependent protein that can act as a 
broad-spectrum anti-viral protein. This protein is an essential 
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inhibitor of viral entry and can restrict wide range of viruses 
including influenza and Ebola [50, 84]. Increased viral load 
was reported in the lungs of ZMP STE24-deficient mice 
following influenza infection [85]. ZMPSTE24 expression 
is necessary for interferon-induced transmembrane protein 
(IFITM) activity. This protein can prevent viral entry [84, 
85]. Autophagy likely acts as both an anti-viral and pro-viral 
pathway in the pathogenesis and life cycles of a wide range 
of viruses [86]. Increasing evidence indicates the idea that 
in the autophagy process zinc may be a positive regulator 
[87–89]. However, it seems that more studies are needed in 
this regard. All of the above events depend on zinc presence 
in the body, so zinc deficiency may cause a significant dis-
ruption in anti-viral defense and immune regulation in the 
respiratory system. Table 1 summarizes the most important 
events mentioned above.

Zinc and Respiratory Viruses

As mentioned above, zinc is a crucial trace element for anti-
viral defense and immune regulation in the respiratory tract. 
Influenza, RSV, and SARS-COV2 are among the viruses 
that can cause severe respiratory infections and even be life-
threatening. Several studies have investigated the importance 
of zinc in these viral infections, and in this section, we will 
review the findings of these interesting studies. Figure 2 
also summarizes the most important points mentioned in 
this section.

Zinc and Influenza Virus Infection

The influenza virus is a known main factor of acute respira-
tory disease, which is extremely contagious and transmit-
ted from person to person via respiratory droplets. Airway 
epithelial cells are the main target of the virus for attack 

and replication. Influenza virus can cause seasonal respira-
tory infection and associated pandemic [90, 91]. The flu 
pandemic has occurred many times. The H2N2 (1957), the 
H3N2 (1967), the H1N1 (2009), and the H1N1 (1918) pan-
demics are among the most important of flu pandemics. The 
pandemic of the influenza virus, which happened in 1918, 
was terrible, and 40–50 million peoples have been died [92]. 
Based on various nuclear proteins (NP) and matrix proteins 
(M), there are four groups of influenza viruses (A, B, C, 
D). A and B types of influenza virus are the main causes of 
influenza infection in humans [93]. Influenza viruses belong 
to the Orthomyxoviridae family. The virus consists of one 
chain negative-sense RNA genome that includes eight-seg-
mented in A and B type [94, 95]. Binding each of the vRNA 
fragments to heterotrimeric polymerase complex is required 
for ribonucleoproteins (RNP) formation [96]. Because the 
influenza virus replicates in the host cell nucleus, RNP must 
be transported to the nucleus. In this process, there is inter-
action between the RNP and cellular transport systems [97].
Hemagglutinin (HA) and neuraminidase (NA) are important 
glycoproteins. These proteins are presented on the external 
surface of the virus [98]. Influenza viruses are divided into 
different subtypes based on HA and neuraminidase NA [99]. 
H1N1 and H3N2 are among the most important of these sub-
types in influenza A and are considered as the main causes 
of seasonal influenza [100].

HA has a key role in virus entry into the host cell and pri-
mary phase infection. When the globular head of HA adjoins 
to the sialic acid receptor in the respiratory tract epithelial 
cell, the replication cycle of the influenza virus can start 
[101, 102]. After this step, clathrin-mediated endocytosis 
has occurred, and then, the endosome is formed [103]. The 
combination of virus and endosome membrane is facilitated 
by acidic conditions in the late endosome, which leads to 
structural change in HA and starts a progression of events 

Table 1  Zinc functions in anti-viral immune response in the respiratory system

Target Function Outcomes

Respiratory epithelial barrier Attenuation of apoptosis and para-cellular leakage Maintaining the structure and function of the respiratory 
epithelium barrier

Help to host defense
Immune cells Increasing the numbers of T lymphocyte

Enhancement of NK cells killer activity
Regulation of Th1/Th2 balance
Modulation of Treg functions
Increasing the production of IFNα by leukocytes

Enhancement and regulation of immune response to respira-
tory viruses

Zip8 Induction of Zip8 expression Amelioration of lung injury
ZAP Zinc is present in zinc-finger motif Attenuation of viral replication
A20 protein Zinc is present in zinc-finger motif Decreasing production of pro-inflammatory cytokines such as 

IL-1β, IL-8 and TNF-α
Attenuation NF-kB activation

Zn-dependent metallopepti-
dase STE24 (ZMPSTE24)

Zinc is present in the active site of the enzyme Inhibition of viral entry
Restriction of enveloped RNA and DNA viruses
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that can cause viral ribonucleoprotein (vRNP) releasing into 
the cytoplasm. Finally, vRNA goes into the nucleus [96, 
104–106]. After entering the viral ribonucleoprotein into 
the nucleus, RNA-dependent RNA polymerase, which is part 
of vRNP, uses negative-sense viral RNA as a template to 
make two types of positive-sense RNAs [95, 105]. One of 
these RNAs is viral mRNAs, which encode viral proteins, 
and the other is complementary RNA, which is transcribed 
into negative-sense viral RNA. Negative-sense viral RNAs 
are assembled with viral proteins and form viral particles. 
Viral particles are released through budding. HA and NA 
play a key role in viral particle releasing [95, 107, 108]. 
The primary anti-viral reaction against influenza can lead 
to the secretion of and type I IFNs and pro-inflammatory 
cytokines such as TNF-α and IL-6 [109, 110]. Immune cells 
are recruited to the site of infection to control the spread of 
the virus. Excessive and uncontrolled production of a pro-
inflammatory cytokine called “cytokine storm” can cause 
tissue damage and organ failure [111, 112]. Due to muta-
tions that may occur during replication in the virus genome, 
mutant virus can be produced, leading to the virus becoming 
resistant to existing antibodies and escape from neutraliza-
tion [113, 114]. Therefore, recognizing alternative anti-influ-
enza factors with various mechanisms is of importance. Due 
to zinc’s role in anti-viral defense and immune regulation, 
several studies have investigated the importance of zinc in 

influenza infection. The findings of an interesting study 
showed that zinc oxide nanoparticles have an anti-viral effect 
only after a viral infection of the cells, which finally leads 
to a decrease in viral titer [115]. Zinc appears to be able to 
inhibit influenza virus’ RNA polymerase activity [116]. A 
recent study showed that zinc-finger protein ZFP36L1 has 
anti-viral properties and can enhance host anti-viral defense 
against influenza A virus by attenuating the production of 
viral proteins including HA, M, and NS [117]. In the pre-
vious section, we discussed the importance of zinc-finger 
anti-viral protein (ZAP). One study showed that the short 
isoform of this protein (ZAPS) could inhibit the expression 
of influenza viral proteins including PA, PB2, and NA [14].

SOD1 is a crucial zinc-dependent antioxidant enzyme. 
It appears that this enzyme can significantly attenuate viral 
polymerase activity and has anti-viral properties against 
H1N1IAV infection. It seems that repression of the copper-
zinc SOD1 enzyme by the IAV may facilitate virus replica-
tion by disrupting cell redox balance [118]. As mentioned 
in the previous section, ZMPSTE24 is also an important 
zinc-dependent protein involved in anti-viral defense and 
immune regulation. One study showed that IAV-infected 
ZMPSTE24-deficient mice had increased viral burden, 
cytokine production, and mortality, indicating an important 
role for this zinc-dependent protein in anti-viral defense, and 
immune regulation following IAV infection [85]. Zinc-finger 

Fig. 2  Anti-viral activities of 
zinc in respiratory viral infec-
tions
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CCCH-type anti-viral protein 1 (ZC3HAV1) is another zinc-
dependent protein involved in the anti-viral defense of host 
cells. One study showed that this protein could attenuate 
IAV replication by increasing IFN-β expression [119]. All 
the results summarized above indicate the importance of 
zinc in the defense against influenza infection. These find-
ings partly justify the results of clinical studies regarding 
the usefulness of zinc in the prevention and treatment of 
influenza infection.

Zinc and Respiratory Syncytial Virus Infection

Respiratory syncytial virus (RSV) is one of the most impor-
tant causes of hospitalization for respiratory system infection 
in young children [120, 121]. RSV is a negative-sense, sin-
gle-stranded RNA virus and is consisted of 11 proteins that 
are encoded by a 15.2 kb RSV genome. Nucleoprotein (N), 
small hydrophobic protein (SH), matrix protein (M), phos-
phoprotein (P), attachment glycoprotein (G), fusion protein 
(F), M2-1, M2-2, large protein (L), and non-structural pro-
teins (NS1 and NS2) are RSV proteins [122, 123]. Among 
these, G and F proteins are responsible for the infection of 
host cells [124]. The virus genome also consists of 10 genes. 
RSV has a lipid envelope that encompasses the ribonucle-
ocapsid [125, 126]. RSV infection can cause serious prob-
lems in the respiratory system. It seems that after 2 to 8 days 
of RSV incubation, the virus is replicated in the nasopharyn-
geal epithelium [121, 123]. Some symptoms including fever, 
nasal congestion, and rhinorrhea are correlated with RSV 
infection in early days [120]. The inflammation that is result-
ing from RSV infection is characterized by necrosis of the 
small airway epithelium and increasing of the mucus secre-
tion, which causes flow in the small airways. The subsequent 
clinical discoveries have shown bronchiolitis signs such as 
excessive inflation, atelectasis, and wheezing. It seems that 
Th2 cells and their cytokines, Th1 cells, and cytotoxic T 
cells are important in the immune response to RSV infec-
tion; furthermore, releasing some leukotrienes by T cells 
and eosinophils is seen. Also, in RSV infection, the levels of 
IgE antibody and IL-33 are elevated [121, 127–130]. IL-33 
is involved in type 2 immunity and mucin production in the 
lung epithelial cells [131, 132]. Despite some decades of 
attempts, there is no approved vaccine for preventing RSV 
infection until yet [133]. Ribavirin is an expensive anti-viral 
drug approved for the treatment of RSV infections. Some of 
the most important and supportive treatments for RSV infec-
tion are oxygen therapy and using of mechanical ventilation 
for the patients [134]. Many studies have mentioned the role 
of micronutrients such as zinc in the treatment of various 
diseases, including viral infections [135, 136]. As mentioned 
in previous sections, zinc has many essential roles in the 
immune system, including regulation of proliferation, differ-
entiation, and maturation of Immune cells. Zinc is involved 

in the regulation of leukocytes and lymphocytes activities 
and modulation of inflammatory responses. It seems that 
zinc deficiency, which is defined as insufficient zinc for body 
needs, results in attenuation of immune system [5, 7].

Although very few studies have been conducted on the 
importance of zinc and zinc-containing proteins in RSV 
infection, the findings indicate that zinc is helpful in control-
ling RSV infection. It seems that blood zinc level in children 
with RSV pneumonia is significantly low [5, 137]. In one 
exam, the inhibitory effects of zinc on RSV infection were 
seen, when incubated with human epithelial type 2 (HEp-2) 
cells only before infection [138]. Studies also have shown 
that zinc treatment enhances interferon α (IFNα) produc-
tion by leukocytes. IFNα, an immune-stimulatory cytokine, 
has anti-viral activity. Increasing the expression of anti-
viral genes by IFNα that are correlated with degradation of 
viral RNA as well as inhibition of viral RNA translation is 
proposed to be stimulated by zinc [5, 7]. The studies also 
reported that intake of at least 75 mg zinc per day could 
decrease the duration of pneumonia symptoms [139]. There-
fore, it is necessary to study the relationship between zinc 
supplementation and RSV-induced pneumonia. One study 
showed that fetal ethanol exposure could be associated with 
immunosuppression and reduced RSV phagocytosis. How-
ever, maternal zinc supplements could enhance RSV phago-
cytosis and reduce RSV burden in the lungs [140], indicat-
ing the importance of sufficient zinc levels in the neonatal 
immune system. Undoubtedly, further studies could reveal 
more dimensions of the benefits of zinc in controlling RSV 
infection. Studying the role of zinc-dependent anti-viral pro-
teins in RSV infection can be very helpful and should be 
considered in future studies.

Zinc and SARS‑COV2 Infection

Coronavirus disease 2019 (COVID-19) was reported in late 
2019 in Wuhan, China. COVOD-19 is caused by severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 
an RNA virus from the coronaviruses family. Although some 
coronaviruses cause mild symptoms such as colds, others, 
including SARS, MERS, and COVID-19, cause severe res-
piratory symptoms that can be life-threatening. Some studies 
have shown a significant similarity between SARS-COV2 
and the SARS-COV in terms of gene sequencing, with about 
79.7% similarity being reported [141]. The SARAS-COV2 
genome encodes four important proteins named S (spike), 
E (envelope), M (membrane), and N (nucleocapsid). S, E, 
and M appear to be associated with the envelope structure 
of the virus, and N is involved in the maintenance of the 
virus genome [142]. S appears to play a pivotal role in the 
virus entry to the respiratory tract epithelial cell by binding 
to ACE2 receptors [143]. Once the virus genome enters the 
host cell, replication, transcription, and translation occur, 
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and after assembly, infectious viral particles are released 
from the cell through budding. Detection of virus RNA 
by innate immune system receptors initiates an immune 
response to the virus. Following this identification, a wide 
range of cytokines and chemokines against the virus are pro-
duced. IL-1β, IL6, TNFα, CXCL8, and MCP1 are among 
these cytokines and chemokines [144]. Lung epithelial 
cells, alveolar macrophages, and dendritic cells produce 
significant amounts of these cytokines and chemokines. 
The JAK-STAT and NFĸB signaling pathways play a very 
important role in the production of above-mentioned pro-
inflammatory cytokines [145]. Given that the IFN response 
in SARS infection is significantly attenuated, it has been 
hypothesized that SARS-COV may be able to escape the 
innate immune barrier by attenuating or delaying the IFN 
response [144]. Therefore, this issue should be studied in 
SARS-COV2 infection precisely. Adaptive immune response 
in COVID-19 also starts by delivering antigens to CD4+ and 
CD8+  T cells [145]. There have been reports of decreased 
T lymphocyte and NK cell counts in patients with COVID-
19 [146]. Although the production of the pro-inflammatory 
cytokines mentioned above is very important for defense 
against SARS-COV2, their uncontrolled and excessive pro-
duction, called cytokine storms, can be very dangerous and 
lead to lung damage and ARDS. Therefore, it seems that 
regulating immunity and preventing excessive inflammation 
are very important in SARS-COV2 infection.

Due to the importance of zinc in anti-viral defense and 
immune regulation in the respiratory tract mentioned in 
the previous sections, after the COVID-19 pandemic, more 
attention was paid to this vital trace element. Although not 
many studies have been done so far, some published results 
are interesting. It seems that zinc can attenuate the RNA 
synthesis of SARS-COV and have an inhibitory effect on 
replicating this virus [13]. Besides, one study showed that 
zinc could inhibit papain-like protease 2 (PLP2) of SAPS-
COV [147]. This enzyme is very important in virus viru-
lence. Since there are many similarities between the SARS-
COV and SARS-COV2 genomes, it is necessary to study 
the above-mentioned results inSARS-COV2 infection care-
fully. Clinical studies in patients with COVID-19 have also 
reported interesting results. One study showed that serum 
zinc levels in patients with COVID-19 were significantly 
lower than in the healthy control group. In addition, the find-
ings of this study showed that ARDS rate, length of hospital 
stay, and mortality increased in COVID-19 patients with zinc 
deficiency [148]. A study of pregnant women with COVID-
19 showed that serum zinc levels in these patients were sig-
nificantly reduced compared to the control group. Besides, 
an inverse correlation was reported between serum zinc and 
IL6 levels. There also appears to be an inverse correlation 
between zinc/copper ratio and disease severity in pregnant 
women with COVID-19 [149]. Another study showed that 

normal levels of zinc and selenoprotein P were associated 
with higher survival in patients with COVID-19 [150]. The 
results of some studies have shown that zinc can be effective 
in the treatment of COVID-19 and increase the effective-
ness of drugs such as hydroxychloroquine and azithromycin. 
One study of 3473 patients with COVID-19 showed that 
a combination of zinc and ionophore hydroxychloroquine 
could reduce the in-hospital mortality rate by 24%; in con-
trast, zinc alone or ionophore alone could not reduce mor-
tality [151]. One study showed that zinc sulfate, along with 
hydroxychloroquine and azithromycin, could reduce ICU 
admission, need for ventilation, and mortality in hospitalized 
patients with COVID-19 [152]. Another study of outpatients 
with COVID-19 showed that treatment of these patients with 
low-dose hydroxychloroquine and azithromycin combined 
with zinc could reduce hospitalization rates and mortality 
rates [153]. These promising clinical observations are justi-
fied by the role of zinc in anti-viral defense and immune 
regulation in the respiratory tract. However, another study 
showed that zinc sulfate did not have a significant effect on 
reducing in-hospital mortality in patients with COVID-19 
[154].

In addition, one study also showed that zinc supplementa-
tion did not have a significant effect on the effectiveness of 
hydroxychloroquine in the treatment of COVID-19, and the 
use of zinc supplementation with this drug did not cause a 
significant difference in parameters such as clinical recovery, 
need for mechanical ventilation, and mortality rates [155]. 
Therefore, more studies should be done in this field. It has 
recently been shown that the combination of nitazoxanide, 
ribavirin, ivermectin, and zinc supplementation has a sig-
nificant effect on clearing the SARS-COV2 [156]. A limited 
number of studies have been performed on the importance of 
anti-viral zinc-dependent proteins in SARS-COV2 infection. 
One study showed that zinc-finger anti-viral protein (ZAP) 
could restrict SARS-COV2 by targeting CpG dinucleotides 
in the virus genome [15]. Therefore, further studies on the 
importance of ZAP and other zinc-dependent proteins men-
tioned in the previous section in COVID-19 are necessary.

Zinc and Acute Respiratory Distress Syndrome 
(ARDS)

ARDS, which develops as a result of widespread inflamma-
tion in the lungs, can lead to severe respiratory failure and 
death. The most important clinical symptoms of ARDS are 
tachypnea and dyspnea, which can cause annoying and dan-
gerous conditions. Respiratory viral infections mentioned 
above can lead to ARDS. Due to the importance of zinc in 
regulating immunity in the respiratory tract, a limited num-
ber of studies have investigated the relationship between 
zinc and ARDS. In one of these studies, it was shown that 
low serum zinc levels are very frequent at the onset of 
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acute failure of the respiratory system [157]. Another study 
showed that plasma zinc levels in patients with ARDS were 
significantly lower than in healthy individuals [158]. One 
study showed that zinc consumption in boys with acute 
lower respiratory infection could reduce the duration of fever 
and severe disease status [159]. Another study of children 
hospitalized with pneumonia also showed that zinc could 
significantly reduce the time of tachypnea and fever [160]. 
Besides, zinc salicylate seems to have beneficial effects in 
preventing airway wall remodeling [161]. A study of 269 
patients with COVID-19 showed that low levels of zinc were 
associated with severe ARDS (OR, 15.4; 95% CI, 6.5–36.3; 
P < 0.001) [162]. Zinc deficiency appears to be associated 
with ventilator-induced lung injury [158]. Therefore, zinc 
supplements may be helpful in preventing ventilator-induced 
lung injury in patients who require mechanical ventilation, 
which should be studied in the future. In addition to these, 
A20, a zinc-dependent protein, appears to play a role in alle-
viating ARDS, possibly due to its role in inhibiting TNF-α 
and NF-κB p65 and enhancing IL10 production [163]. All of 
these above-mentioned promising results suggest that ade-
quate zinc levels may play a protective role against ARDS. 
Therefore, more studies are needed in this area. It is possible 
that sufficient levels of zinc in patients with respiratory viral 
infections can reduce the severity of the disease and pre-
vent ARDS and severe respiratory conditions. Undoubtedly, 
future studies will provide more information in this regard.

Zinc and Vaccination Against Respiratory Viruses: 
Can It Be Helpful?

Undoubtedly, vaccination is one of the most effective ways to 
prevent infectious diseases, especially respiratory viral infec-
tions. Vaccination against the influenza virus plays an impor-
tant role in preventing seasonal influenza, but an effective 
vaccine against RSV has not yet been approved. Several vac-
cines have also been developed against COVID-19 that will 
undoubtedly play a key role in controlling the COVID-19 
pandemic. However, finding ways to increase the effective-
ness of vaccines and boost the immune response following 
vaccination has always been considered as an important area 
of research. Some studies have examined the efficacy of zinc 
in enhancing the effectiveness of respiratory virus vaccines. 
The majority of studies focusing on the flu vaccine have 
reported conflicting findings, and it is not yet clear whether 
zinc can increase vaccine efficacy. A study in pigs showed 
that zinc oxide might help boost humoral immune responses 
following vaccination against swine influenza viruses. In this 
study, it was revealed that high doses of zinc (2500 ppm) in 
combination with the vaccine could significantly increase 
hemagglutination inhibition titers (HAI) following influenza 
infection [164]. Another study of 9- to 18-year-old heart 
disease patients found that supplementing with zinc along 

with the influenza vaccine could reduce the incidence of 
malaise, a common adverse effect of the influenza vaccine. 
Besides, this study showed that zinc supplementation along 
with influenza vaccine could significantly reduce serum 
levels of TNFα in these children [165]. However, studies 
on the elderly have shown that zinc supplementation does 
not significantly affect the effectiveness of the influenza 
vaccine. In one of these studies, which was performed on 
384 people with a mean age of 82 years, it was shown that 
zinc supplementation had no significant effect on antibody 
titers against influenza antigens after vaccination and also 
had no effect on the number of CD4 + and CD8 + lympho-
cytes [166]. Another study of 60 healthy people aged 64 
to 90 years found that zinc supplementation did not affect 
the immune response following influenza vaccination [167]. 
Serum zinc levels do not appear to have a significant effect 
on the immune response following influenza vaccination. 
An interesting study of 205 patients over 65 years showed 
that there was no significant association between serum zinc 
levels and HAI after influenza vaccination, indicating that 
serum zinc levels had no significant effect on the immune 
response following influenza vaccination [168]. However, 
these studies have been performed on elderly groups, and 
more studies are needed on other age groups.

One study also showed that injectable supplement of zinc, 
manganese, selenium, and copper might enhance peripheral 
blood mononuclear cell proliferation and IFN-γ production 
in response to bovine respiratory syncytial virus (BRSV) 
stimulation following vaccination in dairy calves [169]. 
These interesting findings can be considered in the design 
of future studies. Because a very short time has passed since 
the vaccination against COVID-19, the effect of zinc on the 
effectiveness of these vaccines is still unknown. However, 
increasing the efficacy of these vaccines, especially against 
SARS-COV2 mutant species, could become an active 
research area. Considering the importance of zinc in anti-
viral defense and immune regulation and its positive effect 
on the efficacy of some drugs in the treatment of COVID-19 
mentioned above, the effect of zinc supplementation on the 
effectiveness of COVID-19 vaccines can be studied. In addi-
tion, the relationship between zinc deficiency and the side 
effects of COVID-19 vaccines can be studied, as well. Over-
all, more studies are needed to make accurate conclusions 
about the effect of zinc on the effectiveness of vaccination 
against respiratory viruses.

Conclusion and Future Direction

Zinc, an essential trace element, affects the anti-viral 
immune response and immune regulation in the respiratory 
tract. Many of the critical proteins involved in anti-viral 
defense contain zinc in their structure. Interesting clinical 
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findings have been presented that indicate the importance 
of adequate zinc levels in preventing respiratory viral infec-
tions. It seems that zinc can disrupt the replication and 
infectivity of some respiratory viruses. Some studies per-
formed during the COVID-19 pandemic have suggested 
that zinc may increase the effectiveness of some of the 
drugs recommended for the treatment of COVID-19. Some 
reports suggest that zinc has a positive effect on preventing 
ARDS and lung damage following mechanical ventilation. 
The link between zinc and the effectiveness of respiratory 
virus vaccines is still unclear, and the published findings 
are somewhat contradictory. Therefore, more studies are 
needed in this regard. These studies could focus specifically 
on COVID-19 vaccines. Investigation of the association 
between zinc levels and side effects of COVID-19 vaccines 
could be another interesting area for future studies. In gen-
eral, due to the relatively high prevalence of zinc deficiency, 
it is necessary to pay more attention to this trace element. 
The number of studies examining the importance of zinc in 
respiratory infections is relatively low, and it is required to 
direct future studies to zinc and other trace elements.
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